Total Phenols, Identification of Active Compounds and Anticancer Activity of *Salvia judaica* Boiss against the breast Cancer Cell MDA-231

Journal of Bioscience & Biomedical Engineering

Research Article

Abeer Saleh1*, Georget Babojian2, Nizar Issa3 and Noama Shareef4

1Botany Department, Sciences College, Damascus University, Syria.

2Botany Department, Sciences College, Damascus University, Syria.

3Zoology Department, Sciences College, Damascus University, Syria.

4Environmental Science and Engineering expert at CIM: International Center for Migration and Development, Frankfurt, Germany.

*Correspondence authors
Abeer Saleh
Botany Department, Sciences College
Damascus University
Syria

Submitted : 19 Aug 2021 ; Published : 8 Oct 2021

Abstract

Salvia judaica is an annual herb from genus *Salvia* L.; the largest genera of Lamiaceae. It’s a medicinal plant prominent in pharmaceutical applications in many countries around the world.

This study aimed to explore bioactive compounds likely to be responsible for the plant anticancer activity, and evaluate anticancer effects, after determining the total content of phenols in the ethanol extract and essential oil in this species.

Ethanol extract (EE) and essential oil (EO) were prepared from dried aerial parts (leaves and the flower).

GC-MS analysis of EO showed the presence of 43 effective compounds in varying proportions, the major compounds were sesquiterpenes like delta-cadinene, alpha-Gurjunene, beta-humulene, and alpha-caryophyllene.

This is the first study revealed that *S. judaica* is so rich in phenols which proceeded *S. officinalis*, noting the superiority of the EE over the EO samples in the total phenols.

Anticancer properties of EE and EO of *S. judaica* against MDA-231 breast cancer cell line were studied -for the first time- by cell cycle analysis and Annexin V/PI apoptosis assay using Flow cytometry technique. Cells were treated with EE (0.001, 0.01, 0.02, 0.1 mg/ml) and EO (0.005, 0.01, 0.02, 0.03, 0.04 mg/ml) at various concentrations for 48 h.

The results revealed that both EE and EO induced cell cycle arrest at G1-phase.

Cells treated with EE and EO for 48h showed increasing the percentage of cells in G1-phase and decreasing the percentage of cells in S-phase with increasing concentration compared with untreated cells (control).

Annexin V-FITC/PI assay confirmed that EO and EE were able to induce apoptosis. Cells treated with EOat (0.04 mg/ml) for 48h resulted in apoptotic cells at 96.68%, and necrotic cells at 0.12%, compared with untreated cells. On the other hand, Cells treated with EE at (0.1 mg/ml) for 48h resulted in apoptotic cells at 94.43%, and necrotic cells at 0.47%, compared with control.

Results revealed that EO is better than EE as anticancer; treatment with EO resulted in more apoptotic cells and less necrotic cells, and there were significant differences between them. This confirmed that EO contains specific anticancer compounds as showed by GC-MS analysis.

However, more studies should be performed to explore antioxidants present in *S. judaica* and determine the underlying mechanism of their anti-breast cancer properties.

Keywords: *Salvia Judaica*, Total Phenols, GC-MS, Breast Cancer, Cellular Cycle, Apoptosis.
Introduction
Salvia Judaica boiss is one of salvia L., the bigger genus of Lamiaceae. It includes about 1000 species distributed in large tropical and Mediterranean areas in both the old and new worlds. The West Asia region and the Mediterranean Sea Basin are considered as central distributing Habitats [1]. The Syrian Flora contains 26 species, four of them are endemic, and another four species concluded 6 varieties [2].

Lamiaceae (Labiatae previously) plants have volatile compounds in all their parts. Family naming refers to the lip petal shape in their flowers; each flower contains of partly fused petals, /2/ upper lip, /3/ lower lip. The leaves are oval and oblong, perfect or even lobed [3]. The stem is square in cross section which is almost supported by a Colanchem tissue [4]. Many studies focused on the essential oil and the organic extracts biological properties of salvia L. They showed that they have anti-microbes, anti-oxidant, anti-diabetes, anti-tumors, anti-inflammatory and anti-nervous activities [5].

S.judaica produces a lot of effective secondary metabolites including terpenes, phenols and their derivatives, so it was a main part of the folklore medicine all over the world. Many studies revealed that this species contains phenolic acids and flavonoids that have antioxidant activity [6]. They are also used in food industries and cosmetics products [7].

Cancer occurs as a result of disorder in cells growth control mechanisms. Tumors develop because of over growth of cells and inhibition of apoptosis which leads to an imbalance in cells and uncontrolled growth [8].

Breast and cervical cancers are the most spreading in women [10]. Estrogen has a main role in their growth, so many treatments were applied to inhibit its effects [11].

The second most spreading cancer in men is prostate cancer, traditional cancer treatments almost effect on the life patients because of their dangerous side effects, so it is necessary to replace these treatments with others safer. The study of published the first report about the inhibiting effect of S.judaica on colon-rectal cancer [12].

The effect of S.judaica on breast cancer cells hasn’t been studied yet. The current study aimed to identify bioactive compounds in this plant and study anti-cancer activity on MDA-231 breast cancer cell line.

Materials and Methods

Plant material
The aerial parts of S.judaica were collected from the following sites in countryside of Lattakia: Slenfah/Al-Jowayz, Al-Qarda- ha/Al-Murran) in spring of 2018, 2019 years. They were iden-
The cell culture medium was RPMI 1640 supplemented with 10% FBS and 1% penicillin/streptomycin. All cell culture chemicals were purchased from Sigma-Aldrich.

Cell cycle analysis by flow cytometry.

Cell cycle analysis was performed by PI-based measurements of cell DNA content using flow cytometry. Cells were treated with various concentrations of EE (0.001, 0.01, 0.02, 0.1 mg/ml) and EO (0.005, 0.01, 0.02, 0.03, 0.04 mg/ml) (dissolved in DMSO) for 48 h, followed by collection of both attached and detached cells. The pellet was rinsed twice with cold PBS and cells were fixed in 70% ice-cold ethanol overnight at 20°C. Fixed cells were then washed twice with PBS, and DNA was stained with PI (Sigma-Aldrich) staining solution (20µl of cell suspension were added to 2ml of staining solution) and incubated in the dark for 5 min. Flow cytometry analysis was carried out using BD FACSCalibur Flow Cytometer.

Annexin V/PI apoptosis assay.

Cells were cultured (1x10^6 cells/ml) overnight in 25 cm^2 cell culture flasks. Then, cells were treated with various concentrations of EE (0.001, 0.01, 0.02, 0.1 mg/ml) and EO (0.005, 0.01, 0.02, 0.03, 0.04 mg/ml) (dissolved in DMSO) for 48 h. After treatment, both adherent and detached cells were collected and rinsed twice with cold PBS. The cell pellet was resuspended in 1 ml of annexin-binding buffer and incubated with 5 µl of Annexin V-FITC and 5 µl of PI for 15 min. The cells were analyzed by flow cytometry and data were analyzed through Cell Quest program. Annexin V-FITC and PI double staining kit were purchased from BD (USA).

Statistical analysis

Experimental data were presented as the mean ± SD. Data were analyzed. Using the Student’s t-test. P < 0.05 was considered statistically significant.

Results and Discussion

GC-MS analysis

GC-MS analysis revealed the presence of 43 compounds, 68.382% of them are sesquiterpenes like beta-humulene (22.496%), Germacrene-d (12.450%), alpha.-Gurjunene (6.098%), alpha.-Caryophyllen (5.015%), Caryophyllene oxide (8.110%), alpha.-Copaeane (3.531%), delta.-Selinene (2.928%), Isolongifolene (2.364%), alpha & beta-pinene (1.521). (Figure, table 1)

![Figure 1: GC-MS analysis chromatogram of EO (the pink arrows refer to high value peaks)](image)

<table>
<thead>
<tr>
<th>No.</th>
<th>COMPOUNDS</th>
<th>Area Pct</th>
<th>RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>alpha.-pinene</td>
<td>0.521</td>
<td>5.641</td>
</tr>
<tr>
<td>2</td>
<td>beta-pinene</td>
<td>0.636</td>
<td>6.652</td>
</tr>
<tr>
<td>3</td>
<td>alpha-Cubebene</td>
<td>3.531</td>
<td>17.256</td>
</tr>
<tr>
<td>4</td>
<td>alpha-Copaene</td>
<td>5.015</td>
<td>19.049</td>
</tr>
<tr>
<td>5</td>
<td>Geran-4(14)-en-1-one</td>
<td>12.450</td>
<td>19.368</td>
</tr>
<tr>
<td>6</td>
<td>beta.-humulene</td>
<td>22.496</td>
<td>19.368</td>
</tr>
<tr>
<td>7</td>
<td>delta.-Cadinene</td>
<td>5.015</td>
<td>20.291</td>
</tr>
<tr>
<td>8</td>
<td>Germacrene-d</td>
<td>12.450</td>
<td>21.058</td>
</tr>
<tr>
<td>9</td>
<td>Caryophyllene oxide</td>
<td>8.110</td>
<td>22.144</td>
</tr>
<tr>
<td>10</td>
<td>Salvinorin A</td>
<td>2.928</td>
<td>24.194</td>
</tr>
<tr>
<td>11</td>
<td>Iisolongifolene</td>
<td>2.364</td>
<td>24.350</td>
</tr>
</tbody>
</table>

Table 1: The most important compounds in EO of S. Judaica.
A previous Jordanian Study about *S. judaica* revealed the occurrence of sesquiterpenes in EO of dry leaves at 50.8%, and compounds were similar to those in our study, except isolongifolene which was found in our study and absent in the Jordanian Study [12]. The volatile oil composition of *S. judaica* was studied only by Hungarian researchers who found similarities between the volatile constituents of this species and *S. officinalis* in terms of presence of α-humulene and β-pinene as the major components of the volatile fraction [13,14].

Total phenols content

According to the oil samples, the total phenols content in (1g of oil) is depending on that every (100ml) equals (102.65mg) weigh. (Figure2, table2)

(Table2) revealed that EE contained the highest content of phenols comparing with EO (102.78 ± 0.0 mg /g, 63.59 ± 0.63 mg /g in EE and EO respectively).

These results are compatible with the previous study that studied the phenolic content of aerial parts of *S. officinalis* [15]. This study showed that EE80% contained 94.35±1.29 mg gallic acid/g, whereas EO contained 0.708±0.003 mg gallic acid/g dry weight extract.

Anti-cancer activity of EE and EO against MDA-231 breast cancer cell line

Cytometry cycle analyzing

When analyzing cell cycle using PI staining, cells treated with higher concentration of EO for 48 h showed higher accumulation of cells at G1 phase compared to untreated cells (control). This was evident in cells treated with the highest concentration of EO (0.04 mg/ml) which showed increasing the percentage of cells in G1 phase and decreasing the percentage of cells in S phase (74.76% and 25.24% respectively). Similarity, cells treated with higher concentration of EE (0.1 mg/ml) for 48 h showed increasing the percentage of cells in G1-phase (78.72%) and decreasing the percentage of cells in S-phase (14.55%) by increasing concentration compared with control. Significant differences were found between EO and EE treatment results. (Figure 3, 4).

Annexin V/PI apoptosis Assay
Figure 5: Fraction of viable, apoptotic and necrotic MDA-231 cells treated with different concentrations of EO for 48/h. R1: Dead Cells (Late Apoptotic) R2: Live Cells R3: Apoptotic R4: Dead Cells (Necrotic)
A: control cells, B: cells treated with 0.005 mg/ml, C: cells treated with 0.01 mg/ml, D: cells treated with 0.02 mg/ml, E: cells treated with 0.03 mg/ml, F: cells treated with 0.04 mg/ml.

Particularly, cells were treated with different concentrations of EO and EE, and the double staining Annexin V-PE / PI allowed to measure the percentage of live, apoptotic and necrotic cells.
Figure 6: Apoptotic cells treated with EO. Data are represented as mean SD. ± (P<0.05)

As shown in (Figures 5, 6) cells treated with 0.04 mg/ml of EO showed increasing of percentage of apoptotic cells (96.68%) and decreasing of percentage of necrotic cells (0.12 %) as compared to control.

Figure 7: Fraction of viable, apoptotic and necrotic MDA-231 cells treated with different concentrations of EE for 48/h.

R1: Dead Cells (Late Apoptotic) R2: Live Cells R3: Apoptotic R4: Dead Cells (Necrotic)

A: control cells, B: cells treated with 0.001 mg/ml, C: cells treated with 0.01 mg/ml, D: cells treated with 0.02 mg/ml, E: cells treated with 0.1 mg/ml, F: cells treated with 1 mg/ml.
This work was supported by Biotechnology Department in
mechanism of their anti-breast cancer properties.
However, more studies should be performed to explore an
ti-oxidants present in
been studied before now.
To our knowledge, S.judaica breast anti-cancer activity hasn’t
According to genomic profiles. Nature Communications,
Sashidhara, K.V.; Avula, S.R.; Sharma, K.; Palnati, G.R.;
The hallmarks of
dance, anticholinesterase and an-
Comparison of the anti-proliferative activity
of crude ethanol extracts of nine Salvia species grown in
Abaza, (2016) Composition and Biological Activity of
S.judaica breast anti-cancer activity hasn’t been studied before now. S.judaica EO is rich in bioactive
terpenes, and its phenolic content outperformed that belong to S.officinalis. Both EO and EE were able to arrest cell cycle in
GRC-7901 cells [19].
Significant differences were found between results of treating
cells by EO and EE. These results refer that EO was much
better than EE as anti-cancer and it was safer because it caused
less necrotic cells.
These results due to that EO contains specific anti-cancer com-
pounds showed by GC-MS analysis, especially caryophyllene,
humulene and salvia-4(14)-en-1-one (Fig1, Tab2). Many stud-
ies confirmed our results and revealed anti-cancer activity of
caryophyllene and humulene against MCF-7 cells [18]. In ad-
dition, salvia-4(14)-en-1-one is known to its anticancer effect
against many cancer types like human leukemia K-562 and
gastric carcinoma SGC-7901 cells [19].
Significant differences were found between results of treating
cells by EO and EE. These results refer that EO was much
better than EE as anti-cancer and it was safer because it caused
less necrotic cells.
These results due to that EO contains specific anti-cancer com-
pounds showed by GC-MS analysis, especially caryophyllene,
humulene and salvia-4(14)-en-1-one (Fig1, Tab2). Many stud-
ies confirmed our results and revealed anti-cancer activity of
caryophyllene and humulene against MCF-7 cells [18]. In ad-
dition, salvia-4(14)-en-1-one is known to its anticancer effect
against many cancer types like human leukemia K-562 and
gastric carcinoma SGC-7901 cells [19].
Conclusion
To our knowledge, S.judaica breast anti-cancer activity hasn’t
been studied before now. S.judaica EO is rich in bioactive
terpenes, and its phenolic content outperformed that belong to S.officinalis. Both EO and EE were able to arrest cell cycle in
MDA-231breast-cancer cells at G1 phase. They also induced
apoptosis in cells treated with them for 48 h, but EO was much
better than EE as anti-cancer and it was safer because it caused
less necrotic cells.
However, more studies should be performed to explore an-
ti-oxidants present in S.judaica and determine the underlying
mechanism of their anti-breast cancer properties.
Acknowledgements
This work was supported by Biotechnology Department in Atomic Energy Commission of Syria, Damascus, Syria.

Figure 8: Apoptotic cells treated with EE. Data are represent-
ed as mean SD (P<0.05) ±

Similar results were obtained when treating cells with relative-
ly higher concentration of EE (0.1 mg/ml) (Figures 7,8), which
means that EE was effective as anti-cancer as previous study
showed [16], which confirmed the anti-cancer activity of EE of
S.triloba against MCF-7. However, Salvia species are rich in
polyphenols including flavonoids and caffeic acid derivatives
[17].

References
chome morphology and palynology of Salvia chrysoceph-
la Stapf (Lamiaceae). South African Journal of Botany,
ogy, anatomy, palynology, Mericarp and trichome micro
morphology of the rediscovered Turkish endemic Salvia
quezellii (Lamiaceae) and their taxonomic implications. Plant Systematics and Evolution.
DOI: 10.1007/s 00606-014-1020-1.
tical Comparative Petiole Anatomy of Salvia sp. Planta
T.S. (2011) Anti- inflammatory, anticholinesterase and an-
ti-oxidative constituents from the roots and the leaves of
Salvia nipponica Miq. Var. formosana Phyto medicine, 18:
148-150.
In vitro antioxidant and antimicrobial activity of some La-
miaceae species. Iranian Journal of Science & Technolo-
cancer. Cell, 100: 57-70.
8. Domcke, S., Sinha, R., Levine, D.A., Sander. C., Schul-
tz, N. (2013) Evaluating cell lines as tumour models by
comparison of genomic profiles. Nature Communications,
dence and mortality and epidemiology of breast cancer in the
Bathula, S.R.,(2013). Discovery of coumarin monastrol
hybrid as potential anti-breast tumor-specific agent. Eur.
11. Afifi U. Fatma, Violet Kasabri, Hala I. Al-Jaber, Barakat
E. Abu Irmaileh, Mahmoud A. AL-Qudah and Ismail F.
Abaza, (2016) Composition and Biological Activity of
Volatile Oil from Salvia judaica and S.multicaulis from
Jordan. Natural Product Communications, 11(4): 535-
538.
of crude ethanol extracts of nine Salvia species grown in
Jordan against breast cancer cell line models. Pharmacog-
nosy Magazine, 8(32): 319-324.
N, Lemberkovics E, Szoke E. (2009) Chemical and genet-
ic relationship among sage (Salvia officinalis L.) cultivars
and Judaen sage (Salvia judaica Boiss).
14. Martina Jakovljevic´, Martina Jakovljevic´, Stela Jokic´, Maja
Mohar, Midhat Jasić, Jurislav Babic´, Huska Jukic´ and Ines Banjari.,
(2019) Bioactive Profile of Various S.officinalis L. Prepa-

