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Abstract
The impact of viral infections on the central nervous system is widely known. Virus-related neuropsychiatric and 
neurobehavioral syndromes are caused by the distortion of cognitive, affective, behavioral, and perceptual domains. 
Although it is a commonly known phenomenon, the mechanism behind it is not well-understood. The contagious and 
deadly features of coronavirus disease 2019 (COVID-19) have been associated with the virus-host cell interaction at the 
molecular level. However, there is no reliable biomarker characterizing the disease progression. Studies of the structure, 
function, and evolution of coronavirus transmembrane spike glycoproteins (S-, N-, and E-proteins) suggest an essential 
role of protein chirality in virus-cell membrane interaction. The virus-host interaction is the subject of multidisciplinary 
research from the biochirality and systems biology, to cell physiology and non-equilibrium thermodynamics of phase 
transitions in proteins. At the protein level, virus-host interaction is modulated by the amino acid sequence of viral proteins 
and cellular metabolism. Enzymatic and spontaneous post-translational modifications (PTMs) are two mutually influential 
mechanisms governing the dynamics of virus and host cell proteome. Among them, phosphorylation and racemization 
are the most inter-related and studied. The spontaneous phase transitions within viral glycoprotein impacts the cell-entry 
capability of the virus. The spontaneous racemization is a particular and highly specific metabolic event in virus-cell 
interaction that is the focus of our attention. Many viral proteins are characterized by a high proportion of the serine (Ser) 
residues, which are the common target of the host-cell glycosylation, phosphorylation, and racemization, and proteolytic 
enzymes. Particularly, coronavirus N proteins were found to be phosphorylated at multiple Ser residues, a portion of which 
are shown to be phosphorylation-prone by the Ser-associated kinases. Since Ser is known as one of the most racemization 
prone amino acids, we promote an idea of the specific impact of spontaneous racemization at Ser residues on virus-host 
interaction.

Abbreviations

Amino acids  		  :	 AAs
D-amino acids 		  :	 D-AAs
Carboxyl-terminal domain : 	 CTD
Central nervous syste 	 :	 CNS
Coronavirus		  :	 CoV 
Coronavirus disease 2019 	:	 COVID-19 

Herpes simplex virus type 1 	 :	 HSV-1 
Human immunodeficiency virus	 :	 HIV
Nucleocapsid protein		  :	 N protein 
Post-translational modifications	 :	 PTMs 
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D-Serine			   :	 D-Ser
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Threonine			   :	 Thr 
Tyrosine				   :	 Tyr 
Spike glycoprotein		  :	 S-proteins 
Phase transitions			   :	 PhTs
Ribonucleic acid RNA, RNA polymerase II  :  RNAP II
Severe acute respiratory syndrome coronavirus 2 : SARS-
CoV-2 

Introduction 

The intra-cellular protein-based metabolic network is an 
evolutionary conserved, but also a highly dynamic system. The 
main driving force of the network is a complex of canonical 
enzyme-catalyzed post-translational modifications (PTMs).
The number of molecular side products and environmental 
stresses gives rise to many spontaneous non-canonical 
pathways of PTMs, that are involved in protein aging 
and human age-related disorders [1,2,3]. Enzymatic and 
spontaneous PTMs are two mutually influential mechanisms. 
For example, excessive phosphorylation of TAU is known 
as a cause of protein aggregation [4,5,6]. The mechanism 
is believed to be cell, protein, and residue specific. Post-
translational phosphoproteins display significant age-related 
changes in the composition of amino acid’s (AA’s), and in 
their cross-linking, and racemization. A relevant example 
is the age-related loss of phosphoserine (SerPh) content in 
human phosphoproteins. This mechanism remains to be 
studied and presumably is associated with the interplay of 
enzymatic phosphorylation and spontaneous racemization 
[6]. The widespread role of non-enzymatic reactions in cell 
metabolism is also well documented [7]. In particular, it has 
been shown that the spontaneous modification of AAs in viral 
glycoprotein impacts the cell-entry capability of the virus 
[8]. The significance of biochirality is supported by a shared 
recognition that the spontaneous or induced mutations in viral 
genetic material may alter the disease’s pathogenesis. This 
spontaneous racemization, a particular and highly specific 
metabolic events in virus-cell interaction, is the focus of the 
current short review. 

Biochirality of Coronavirus
The origin, transmission, and clinical therapies of coronavirus 
disease 2019 (COVID-19) are a primary target of current 
medical and scientific investigation [1-30]. Coronavirus (CoV) 
is a group of enveloped RNA viruses causing respiratory 
diseases in both humans and animals. Many details of CoV-
associated damage at the cellular and molecular levels are still 
unclear. Due to their inability to self-replicate, viruses have 
developed unique potentials to utilize and modify the metabolic 
and signaling pathways of the host cell. Recent development 
shows that the host cell entry and the replication cycle of 
coronavirus (CoV) employs a variety of forms of the cell’s 
protein’s PTMs including glycosylation and phosphorylation 
[24-28]. The fundamental physical mechanism underlying the 
translocation of viral genomes into the cells is traditionally 
identified as non-equilibrium phase transitions [31-36]. 
However, none of them gives attention to the essential role of 
the chiral determinants of molecular condensation, highlighted 

in several reviews [3]. The interplay of viral and host cell 
proteins PTMs is the subject of increasing attention. The 
interaction networks of viral and host proteins during early 
steps of infection is well known from immunodeficiency virus 
(HIV) related studies [29]. The knowledge about immune 
response induced by CoV is critical to patient treatment 
[37]. The mammalian innate and adaptive immune systems 
are under the control of AAs metabolism associated with the 
complex network of enzymatic and spontaneous racemization 
[38,39]. The pivotal role of D-amino acids (D-AAs), including 
D-Serine (D-Ser) and D-Aspartate (D-Asp) in the innate and 
adaptive immune systems, is a new-emerging and promising 
field of biochemistry [40-42]. However, in spite of the known 
role of D-AAs in immune system function, there is a void of 
information about the enzymatic and spontaneous racemization 
of CoV proteins and the impact of racemization on the virus-
receptor coupling, membrane fusion, endocytosis and the host 
cell’s protein racemization. The discovery of spontaneous 
PTMs in noroviruses suggests that the list of PTMs involved 
in this should include not only enzymatic but also spontaneous 
forms of PTMs including racemization and epimerization, 
which are common in the host cell physiology and pathology 
[3,30]. Notably, protein damage due to aberrant PTMs is a 
significant hallmark of lung aging[43]. The reductions of lung 
functions with age, at the molecular level, are associated with 
the cell type-specific protein aging and loss of functions related 
to aberrant PTMs. It is thus logical to assume that COVID-19 
progression could be regulated by the aberrant PTMs. 

The most accepted form of aberrant PTM associated with 
protein aging, aggregation, and dysfunction is spontaneous 
racemization [3]. The aberrant virus associated PTMs of 
proteins is well-known effect [28]. One particular example 
involves collagen nanofibers, which are the primary 
determinants of the biological and structural integrity of 
various tissues and organs, including bone, skin, tendon, blood 
vessels, cartilage, and the lungs [11]. Excessive deposition of 
collagen has previously been seen in virus-related pulmonary 
fibrosis [44]. Severe acute respiratory disease caused by severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is 
associated with multi-modal lung dysfunction. At the protein 
level, SARS-CoV-2 is accompanied by collagen fibrosis [45]. 
The AA’s chain of collagen contains multiple phosphorylation-
prone and racemization-prone serine (Ser) residues [12-14]. 
The accumulation of fibrotic collagen is a well-known process 
that accompanies many pathological conditions [15-17].  The 
experimental results of lung proteomics in rodents revealed 
that collagen protein was increasingly racemized with age. 
Collagen is also a target of spontaneous racemization [18]. 
Most racemized AAs in lung collagen have been identified 
as Ser [19]. Although the details of the cellular responses to 
the coronavirus are unknown, the epithelial cells of the airway 
have been identified as a primary target [20]. Alterations in the 
composition of the extracellular collagen matrix have been 
shown in many pulmonary disorders [21,22].
 
Many viral proteins are characterized by a high proportion 
of Ser residues. Particularly, CoV nucleocapsid proteins (N 
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proteins) were found to be phosphorylated at multiple Ser 
residues, a portion of which is shown to be phosphorylation-
prone by the serine-associated kinases [46-49]. Since Ser is one 
of the racemization prone AAs, we promote an idea concerning 
the specific impact of spontaneous racemization on virus-host 
interaction [3]. Viral Ser-targeting enzymes are traditionally 
used as a drug target in clinical practice [23]. This targeting 
strategy is in agreement with the several essential facts that 
point to the key role of Ser-associated enzymes in virus-host 
cell interactions including Ser kinases, Ser proteases, and Ser 
hydrolase enzymes [50-55,58]. 

The cell entry programs for CoV are mediated by the viral 
transmembrane spike glycoprotein (S protein) that bind 
cellular receptors and involves virus-cell membrane fusions. 
The interaction of S protein with the membrane receptor 
triggers a cascade of events including proteolysis, and 
acidification in endosomes [56]. It was found that S protein in 
viruses isolated from humans during the 2003–2004 outbreak 
had a Ser at position 360 (Ser-360) located in the α-helix 
region [57]. As a result, among the respiratory virus-activating 
membrane-anchored enzymes, the Ser protease family is of 
specific interest [58]. The function of the kinase-phosphatase 
PTMs at Ser, threonine (Thr), and tyrosine (Tyr) residues are 
well known from the studies of many human viruses including 
(HIV) [29,59]. Notably,  Ser residues in this triad are classified 
as the most racemization- and phosphorylation-prone residues 
implicated in protein ageing and cellular disfunction [3,51]. 
The studies of herpes simplex virus type 1 (HSV-1) reveal that 
infection alters the phosphorylation of the carboxyl-terminal 
domain (CTD) of RNA polymerase II (RNAP II). CTD consists 
of a repeated heptameric sequence (YSPTSPS) containing 
three Ser residues (Ser-2, Ser-5, and Ser-7). Phosphorylation at 
Ser-2, Ser-5, and Ser-7 is essential for enzyme function and is 
vulnerable to the viral impact [60,61]. Protein phosphorylation 
on serine, threonine, and tyrosine (Ser/Thr/Tyr) is considered 
to be the major regulatory PTMs in eukaryotic cells from 
bacteria to mammal [62]. In mammals, the racemization-prone 
Ser residues are most closely linked to the post-translational 
phosphorylation (PTPh) of proteins Accordingly, Ser is among 
the key players in the rapid evolution of protein phosphorylation 
sites [3,63]. Also, PTPh of Ser serves for the rewiring and 
modulation of the cell signal pathways. Along with the Tyr and 
lysine (Lys), Ser phosphorylation is an essential regulator of 
NMDAR-associated neurotransmission [64]. From the broader 
biological scale, Ser associated phosphorylation is known as a 
mechanism involved in natural selection to fit the environment. 

We hypothesize that the same Ser-centered mechanisms 
should be considered not only for the acute response to the 
environmental cues in general, but also for the immune 
response to the viral infection.

Conclusion

The coherent set of evidence discussed above, allows for 
the articulation of the hypothesis that COVID-19 triggers a 
cascade of spontaneous PTM. In this regard, the control of the 

level of D-AAs (including D-Ser) in the lung can serve as a 
reliable biomarker of COVID-19- related disease conditions. 
This hypothesis is supported by the newly derived line of facts 
including the finding that viral infection {herpes simplex virus 
type I (HSV-1)} of human-induced neural stem cells (hiNSCs) 
{3D bioengineered brain model} leads to the formation of 
the amyloid plaque-like aggregations [65]. The aggregates 
of amyloid plaque contain several D-AAs.  It is also known 
that D-AAs-containing proteins are resistant to the metabolic 
and digestive enzymes, which usually recognize only proteins 
composed exclusively of L-AAs-based proteins or peptides 
[66]. As a result, unmetabolized D-AAs-containing brain 
peptides may be found in urine and blood, serving as the useful 
biomarker for associated diseases. The broad range significance 
of bio-chirality is exemplified in the studies of D-AAs role 
in kidney-related and neurodegenerative diseases [2,67,68]. 
Further investigation of the epidemiology, pathogenesis, and 
chiral proteomics of the virus is necessary for the proper 
understanding of acute and long-term consequences of CoV 
infections, as well as for nutritional support to patients , and 
the development of effective therapeutic and prophylactic [71].

Afterword
The multidisciplinary facets of virus-related research require 
attention to the physics of protein folding [3]. From a 
biophysics perspective, the capsid shell of the virus is seen as 
a two-dimensional crystal with a limited size closed surface 
comprising inside cargo space [70]. 

The capsid surface is the arrangement of the equivalent 
oligomeric sub-units. The chirality of virus proteins is a critical 
internal determinant of the handedness observed in capsid 
morphology. The chirality propagation from the protein to 
the morphological level is equally necessary for two different 
events [71]. The first: virus entry into the host cell and the 
second is the protection from unnecessary molecular invasions 
into virus DNA [72]. The spontaneous phase transitions (PhTs) 
within viral glycoproteins impacts the cell-entry capability 
of the virus. The spontaneous racemization is a particular 
and highly specific metabolic event in virus-cell interaction, 
and is the focus of our attention. Many viral proteins are 
characterized by a high proportion of the Ser residues, 
which are the common target of the host-cell glycosylation, 
phosphorylation, racemization, and proteolytic enzymes 
[58,73-76]. Particularly, CoV N proteins were found to be 
phosphorylated at multiple Ser residues, a portion of which 
are shown to be phosphorylation-prone by the Ser-associated 
kinases. Since Ser is known as one of the most racemization 
prone amino acids, we promote the idea of the importance of 
the specific impact of spontaneous racemization on virus-host 
interaction. While speculative, the above-considered arguments 
are convincing to expect that spontaneous racemization may 
also be involved in the development of neuropsychiatric and 
cognitive pathologies.
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