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Modelling and Prediction of Compressive Strength of Hydraulic
 Concrete Structure in Multiproduct Batch Plant Design for Protein
 Production using Extreme Gradient Boosting Regressor with Grid

 Search support

Introduction
Concrete is a composite material composed of fine and coarse 
aggregate bonded together with a fluid cement (cement paste) 
that hardens (cures) over time. In the past, lime based cement 
binders, such as lime putty, were often used but sometimes with 
other hydraulic cements, such as a calcium aluminate cement or 
with Portland cement to form Portland cement concrete (named 
for its visual resemblance to Portland stone). Many other non-
cementitious types of concrete exist with other methods of binding 
aggregate together, including asphalt concrete with a bitumen 
binder, which is frequently used for road surfaces, and polymer 
concretes that use polymers as a binder. Concrete is distinct from 
mortar. Whereas concrete is itself a building material, mortar is a 
bonding agent that typically holds bricks, tiles and other masonry 
units together.

When aggregate is mixed with dry Portland cement and water, the 
mixture forms a fluid slurry that is easily poured and molded into 
shape. The cement reacts with the water and other ingredients to 
form a hard matrix that binds the materials together into a durable 
stone-like material that has many uses. Often, additives (such 
as pozzolans or superplasticizers) are included in the mixture to 
improve the physical properties of the wet mix or the finished 
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Abstract
This work deals with the problem of modeling and prediction of compressive strength of concrete structure in 
multiproduct batch plant design of protein production found in a chemical engineering process with uncertain 
demand. Modeling the strength of concrete for this process is very complex. However, it can be solved by minimizing 
the investment cost. Therefore, the aim of this work is to minimize the investment cost and find out the number 
and size of parallel equipment units in each stage. For this purpose, it is proposed to solve the problem by using 
extreme gradient boosting regressor with grid search support (XGBoost), could be interpreted as an optimization 
algorithm on a suitable cost function, which take into account, the uncertainty on the demand using gaussian 
process modeling. The results about number and size of equipment’s, investment cost, production time, process time 
and idle times in plant obtained by light gradient boosted trees regressor are the best. 

This methodology can help the decision makers and constitutes a very promising framework for finding a set of 
“good solutions”.
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material. Most concrete is poured with reinforcing materials (such 
as rebar) embedded to provide tensile strength, yielding reinforced 
concrete. 

Concrete is one of the most frequently used building materials. 
Its usage worldwide, ton for ton, is twice that of steel, wood, 
plastics, and aluminum combined. Globally, the ready-mix 
concrete industry, the largest segment of the concrete market, 
is projected to exceed $600 billion in revenue by 2025. This 
widespread use results in a number of environmental impacts. 
Most notably, the production process for cement produces large 
volumes of greenhouse gas emissions, leading to net 8% of global 
emissions. Significant research and development is being done to 
try to reduce the emissions or make concrete a source of carbon 
sequestration. Other environmental concerns include widespread 
illegal sand mining, impacts on the surrounding environment such 
as increased surface runoff or urban heat island effect, and potential 
public health implications from toxic ingredients. Concrete is also 
used to mitigate the pollution of other industries, capturing wastes 
such as coal fly ash or bauxite tailings and residue.
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Nonetheless, in chemical engineering, there has been an increased 
interest in the development of systematic method for the design 
of batch process in specialty chemicals, food products, and 
pharmaceutical industries (Reklaitis, 1992) [1]. Most processes in 
the modern biotechnology industry correspond to batch plants and 
with the rapid development of new products (i.e, both therapeutic 
and non therapeutic proteins) (Crougham et al. 1997) [2].

The main host for recombinant proteins for many years has been 
Escherichia coli. However, the developments with yeast cells 
have grown at a very rapid pace, which has resulted in several 
important commercial products such as insulin, hepatitis B 
vaccine, and also more recently, chymosin and protease. The fact 
that many recombinant proteins made in yeast can be made to be 
secreted out of the cell and that yeast allows for at least partial 
glycosilation is an added bonus for this host (Montatgna et al. 
2000) [3], therefore, in the optimal design of a multiproduct batch 
chemical process, the production requirement of each product and 
the total production time available for all products are specified. 
The number and size of parallel equipment units in each stage 
as well as the location and size of intermediate storage are to be 
determined in order to minimize the investment cost.

The common approach used by previous research in solving 
the design problem of batch plant has been to formulate it as 
a mixed integer nonlinear programming (MINLP) problem 
and then employ optimization techniques to solve it. Robinson 
and Loonkar (1972) [4] studied the problem of designing 
multiproduct plants operating in single product campaign mode 
and with a single unit in each processing stage and they extended 
the nonlinear programming model to include both the design of 
discrete equipment size and the selection of the parallel units 
number, by solving it through the use of heuristics and branch and 
bound. The same problem was further formulated by Grossmann 
and Sargent (1979) as a (MINLP) model [5]. Knopf et al. (1981) 
and Yeh and Reklaitis (1987) accounted for the presence of 
semicontinuous units [6, 7]. Voudouris and Grossmann (1992) 
proposed reformulations of the previous design models where 
discrete size are explicitly accounted for [8].

Many works in the literature on batch process design are based 
on expressions that relate the batch sizes linearly with the 
equipment sizes. Also, the processing times are usually expressed 
as nonlinear functions of the batch size. Given certain restrictions 
on these mathematical expressions, the models can be referred to 
as posynomials, which possess a unique optimum (Grossmann 
and Sargent. 1979) [5]. Salomone and Iribarren (1992) proposed 
posynomial models in which the constants are obtained as a 
result of the optimization of the process decision variables with 
simplified models [9]. Salomone et al. (1994) generalized the 
approach by allowing the process parameters to be generated from 
either experimental data and/or dynamic simulation [10]. Because 
of the NP-hard nature of the design problem of batch plant, 
unbearable long computational time will be induced by the use 
of Mathematical Programming (MP) when the design problem is 
somewhat complicated. Severe initial values for the optimization 
variables are also necessary. Moreover, with the increasing size 
of the design problem, MP will be futile. Heuristics needs less 
computational time, and severe initial values for optimization 
variables are not necessary, but it may end up with a local 

optimum due to its greedy nature. Also, it is not a general method 
with respect to the fact that special heuristic rules will be needed 
for a special problem.

In economics, demand is the desire to own something and the 
ability to pay for it (Henning et al. 1988) [11]. The term demand is 
also defined elsewhere as a measure of preferences that is weighted 
by income, but the market demand for such products is usually 
changeable, and at the stage of design of a batch plant, it is almost 
impossible to get the precise information on the future product 
demand over the lifetime of the plant. However, decisions must 
be made about the plant capacity. This capacity should be able 
to balance the product demand satisfaction. In the conventional 
optimal design of a multiproduct batch chemical plant (Hasebe, 
1979) [12], a designer specifies the production requirements for 
each product and total production time for all products (Floudas, 
2005) [13]. The number required of volume and size of parallel 
equipment units in each stage is to be determined in order to 
minimize the investment cost.

Basically, batch plants are composed of items operating in a 
discontinuous way. Each batch then visits a fixed number of 
equipment items, as required by a given synthesis sequence (so-
called production recipe) (Ponsich et al. 2007) [14]. For instance, 
the design of a multiproduct batch chemical plant is not only to 
minimize the investment cost, but also to minimize: the operation 
cost, total production time, and to maximize: the revenue, 
flexibility index, simultaneously (Aguilar et al. 2005) [15].

On the other hand, the key point in the Design of Multiproduct Batch 
Plants (DMBP) under uncertain demand. The market demand for 
products resulting from the batch industry is usually changeable, 
and at the stage of conceptual design of a batch plant, it is almost 
impossible to obtain the precise information on the future product 
demand over the plant lifetime. Nevertheless, decisions must be 
made about the plant capacity. This capacity should be able to 
balance the product demand satisfaction and extra-capacity in 
order to reduce the loss on the excessive investment cost or than 
on market share due to the varying product demands.

The most recent common approaches treated in the dedicated 
literature represent the demand uncertainty using fuzzy concepts 
with trapezoidal fuzzy number which can be represented by 
a membership function (Bautista et al. 2007) [16]. Yet, this 
assumption does not seem to be always a reliable representation 
of reality, because in practice we can’t get whole linguistics 
parameters about the uncertainty demand, such as perceptions, 
seasons and offers. For this reason an alternative treatment of the 
imprecision is constituted by using gaussian process modeling 
that represents the “more or less possible values”.

In this work, we will only consider multiproduct batch plants, 
which means that all the products follow the same operating 
steps (Cao et al. 2002) [17], the structure of the variables are the 
equipment sizes and number of each unit operation that generally 
take discrete values.

The aim of this work is to solve the DMBP under uncertain 
demand using gradient bosting algorithms. The model presented 
is general, it takes into account all the available options to increase 
the efficiency of the batch plant design: unit duplication in-phase 
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and out-phase and intermediate storage tanks. 

The paper is organized as follows, section 2 is devoted to the 
methodology. In section 3 we formulate the problem formulation, 
including process description. Then in section 4 we report results 
and discussion with comparative results. Finally the conclusions 
on this work are drawn. 

Methodology
In the 1960s and 1970s witnessed a tremendous development 
in the size and complexity of industrial organizations. The 
administrative decision-making has become very complex and 
involves large numbers of workers, materials and equipment. A 
decision is a recommendation for the best design or operation in a 
given system or process engineering, so as to minimize the costs or 
maximize the gains (Salvendy, 1982) [18]. Using the term “best” 
implies that there is a choice or set of alternative strategies of action 
to make decisions. The term optimal is usually used to denote the 
maximum or minimum of the objective function, and the overall 
process of maximizing or minimizing is called optimization. The 
optimization problems are not only in the design of industrial 
systems and services, but also apply in the manufacturing and 
operation of these systems once they are designed. Including 
various methods of optimization, we can mention: MINLP, Monte 
Carlo Method and Evolutionary algorithms.

Extreme Gradient Boosting Regressor with Grid Search 
support
The extreme gradient boosting regressor with grid search support 
is a machine learning technique for regression and classification 
problems, which produces a prediction model in the form of an 
ensemble of weak prediction models, typically decision trees. 
When a decision tree is the weak learner, the resulting algorithm 
is called gradient boosted trees, which usually outperforms 
random forest. It builds the model in a stage-wise fashion like 
other boosting methods do, and it generalizes them by allowing 
optimization of an arbitrary differentiable loss function.

The idea of gradient boosting originated in the observation by 
Leo Breiman that boosting can be interpreted as an optimization 
algorithm on a suitable cost function [19]. Explicit regression 
gradient boosting algorithms were subsequently developed by 
Jerome H. Friedman [20], simultaneously with the more general 
functional gradient boosting perspective of Llew Mason, Jonathan 
Baxter, Peter Bartlett and Marcus Frean. The latter two papers 
introduced the view of boosting algorithms as iterative functional 
gradient descent algorithms. That is, algorithms that optimize 
a cost function over function space by iteratively choosing a 
function as a weak hypothesis that points in the negative gradient 
direction. This functional gradient view of boosting has led to the 
development of boosting algorithms in many areas of machine 
learning and statistics beyond regression and classification.

Like other boosting methods, gradient boosting combines weak 
“learners” into a single strong learner in an iterative fashion. It is 
easiest to explain in the least-squares regression setting, where the 
goal is to “teach” a model F to predict values of the form.

	 ŷ = f(x)

by minimizing the mean squared error

 

Where i indexes over some training set of size n of actual values 
of the output variable y :

•	 ŷi = the predicted value F(x)

•	 	yi = the observed value

•	 	n the number of samples in y

Now, let us consider a gradient boosting algorithm with M stages. 
At each stage m (1 ≤  m ≤ M) of gradient boosting, suppose some 
imperfect model Fm for low m, this model may simply return ŷ=ȳ 
where the ȳ is the arithmetic mean of y.

In order to improve Fm the algorithm should add some new 
estimator, hm(x). Thus

 Fm+1 (x) = Fm (x) + hm (x) = y

Or, equivalently,

 hm (x) = y-Fm(x)

Therefore, gradient boosting will fit h to do residual y-Fm(x). As 
in other boosting variants, each F(n+1) attempts to correct errors of 
its predecessor Fm

A generalization of this idea to loss functions other than squared 
error, and to classification and ranking problems, follows from the 
observation that residuals hm(x) for a given model are the negative 
gradients of the mean squared error (MSE) loss function (with 
respect to F(x)):

     

     

So, light gradient boosted trees regressor could be specialized to 
a gradient boosting machine, and generalizing it entails “plugging 
in” a different loss and its gradient.

Algorithm
Gradient Boosting Machines (or Generalized Boosted Models, 
depending on who you ask to explain the acronym ‘GBMs’) are 
an advanced algorithm for fitting extremely accurate predictive 
models. GBMs have won a number of recent predictive modeling 
competitions and are considered by many data scientists to be the 
most versatile and useful predictive modeling algorithm. GBMs 
require very little preprocessing, elegantly handle missing data, 
strike a good balance between bias and variance, and are typically 
able to find complicated interaction terms, making them a useful 
“Swiss army knife” of predictive models.

GBMs are a generalization of Freund and Schapire’s adaboost 
algorithm (1995) that handles arbitrary loss functions [21]. 
They are very similar in concept to random forests, in that they 
fit individual decision trees to random re-samples of input data, 
where each tree sees a bootstrap sample of the rows of the dataset 
and N arbitrarily chosen columns, where N is a configurable 
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parameter of the model. GBMs differ from random forests in a 
single major aspect: rather than fitting the trees independently, 
the GBM fits each successive tree to the residual errors from all 
the previous trees combined. This is advantageous, as the model 
focuses each iteration on the examples that are most difficult to 
predict (and therefore most useful to get correct).

Due to their iterative nature, GBMs are almost guaranteed to 
overfit the training data, given enough iterations. Therefore, the 2 
critical parameters of the algorithm are the learning rate (or how 
fast the model fits the data) and the number of trees the model is 
allowed to fit. It is critical to tune one of these 2 parameters, and 
when done correctly, GBMs are capable of finding the exact point 
in the training data where overfitting begins, and halt one iteration 
prior to that point. In this manner GBMs are usually capable of 
squeezing every last bit of information out of the training set and 
producing a model with the highest possible accuracy without 
overfitting.

Extreme Gradient Boosting (XGBoost) is a very efficient, 
parallel version of GBM that has won a large number of Kaggle 
competitions. The base algorithm is very similar to GBM in R 
or in Python, but it has been heavily optimized and tweaked for 
faster runtimes and higher predictive accuracy.

Figure 1: Demonstration of a Decision Tree.

However, the algorithms of Tree Split Finding with Missing Value 
is described as follow:

 

Reduction by introducing the split is calculated by

 

Loss Function
The XGBoost regressor uses least-squares loss by default, but 
can also use: tweedie loss for zero-inflated positive distributions, 
poisson loss for count problems, and gamma loss for right skewed 
positive distributions.

Early Stopping Support
Early stopping is a method for determining the number of trees 
to use for a boosted trees model. The training data is split into a 
training set and a test set, and at each iteration the model is scored 
on the test set. If test set performance decreases for 200 iterations, 
the training procedure stops and the model returns the fit from the 
best tree seen so far. The approach saves time by not continuing 
past the point where it is clear that the model is over fitting and 
further trees will not result in more accuracy.

Note that the early stopping test set uses a 90/10 train/test split 
within the training data for a given model. For example, a 64% 
model on the Leader board will internally use 57.6% of the data 
for training, and 6.4% of the data for early stopping. A 100% 
model on the Leader board will internally use 90% of the data for 
training and 10% of the data for early stopping. Since the early 
stopping test set was used for early stopping, it cannot be used for 
training. This limitation also applies to grid search: within the grid 
search train/test split, the model will use a 90/10 train/test split for 
early stopping.

Grid Search Support
Grid search is supported in this task. During training, grid search is 
run to estimate the optimal model parameter values that yield the 
best performance (evaluated by the configured loss function). The 
grid search runs on a 70/30 train/test split within the training data; 
the estimated score uses 30% of the training data split. After the 
grid search completes and the best tuning parameters are found, 
the final model is retrained on 100% of training data. Validation 
scores of the final model are different from the validation scores 
of the grid search.

Grid search is run on the task parameter with one of the following 
types: ‘intgrid’, ‘floatgrid’, ‘listgrid(int)’, ‘listgrid(float)’, 
‘selectgrid’, or ‘multi’. Refer to the Parameters section for details 
of task parameter definitions.

For each grid search parameter, the search space is defined by the 
parameter values. Refer to the Parameters section for details of 
task parameter definitions as showed as follow:
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Parameters tuning of Extreme Gradient Boosting
•	 	learning_rate (lr): floatgrid (default=’0.3’)

•	 	n_estimators (n) : int (default=’100’)

•	 	max_depth (md): intgrid (default=’3’)

•	 	min_child_weight(mcw):floatgrid (default=1.0)

•	 	colsample_bytree(cbt):floatgrid (default=’1.0’)

•	 	colsample_bylevel(cbl):floatgrid (default=’1.0’)

•	 	min_split_loss(msl):floatgrid (default=’0.01’)

•	 	num_parallel_tree(npt):intgrid (default=’1’)

•	 	scale_pos_weight(spw): float (default=’1’)

•	 	max_delta_step(mds):floatgrid (default=’0.0’)

•	 	missing_value (mv): float (default=’0.0’)

•	 	base_margin_initialize (base_init): select (default=’False’)

•	 	tree_method (tm): select (default=’auto’)

•	 	max_bin (mb): int (default=’256’)

•	 	mono_up(mono_up):string (default=None)

•	 	mono_down(mono_down):string (default=None)

•	 	random_state(rs): intgrid (default=’1234’)

•	 	reg_alpha (ra): multi (default=’0’)

•	 	subsample: floatgrid (default=1)

•	 	reg_lambda (rl): multi (default=’0’)

•	 	loss (l): select (default=’ls’)

•	 	tweedie_p (p): float (default=’1.5’)

•	 Problem formulation

Assumptions
The model formulation for DMBP’s problem approach adopted 
in this section is based on (Karimi, 1989) [22]. It considers not 
only treatment in batch stages, which usually appears in all types 
of formulation, but also represents semi-continuous units that are 
part of the whole process (pumps, heat exchangers, others).

A semi-continuous unit is defined as a continuous unit alternating 
idle times and normal activity periods. Besides, this formulation 
takes into account mid-term intermediate storage tanks, the 
obligatory mass balance at the intermediate storage stage, which 
is one of the most efficient strategies to decouple bottlenecks in 
batch plant design. They are just used to divide the whole process 
into sub-processes in order to store an amount of materials 
corresponding to the difference of each sub-process productivity.

This representation mode confers on the plant better flexibility for 
numerical resolution: It prevents the whole production process 
from being paralyzed by one limiting stage. So, a batch plant is 
finally represented as a series of batch stages (B), semi-continuous 
stages (SC) and storage tanks (T).

The model is based on the following assumptions:

1.	 The processes operate in the way of overlay.

2.	 Production is achieved through a series of single product 
campaigns.

3.	 Units of the same batch or semi-continuous stage have the 
same type and size.

4.	 The devices in the same production line cannot be reused by 
the same product.

5.	 The long campaign and the single product campaign are 
considered.

6.	 The type and size of parallel items in-or out-of-phase are the 
same in one batch stage.

7.	 All intermediate tanks are finite.

8.	 The operation between stages can be of zero wait or no 
intermediate tank when there is no storage.

9.	 There is no limitation for utility.

10.	 The cleaning time of the batch item can be neglected or 
included in processing time.

11.	 The size of the devices can change continuously in its own 
range.

Model 
The model considers the synthesis of (I) products treated in (J) 
batch stages and (K) semi-continuous stages. Each batch stage 
consists of (mj) out-of-phase parallel items of the same size (Vj). 
Each semi-continuous stage consists of (nk) out-of-phase parallel 
items with the same processing rate (Rk) (i.e. treatment capacity, 
measured in volume unit per time unit). The item sizes (continuous 
variables ) and equipment numbers per stage (discrete variables) 
are bounded. The (S-1) storage tanks, with size (Vs

*), divide the 
whole process into (S) sub-processes.

Following the above mentioned notation, DMBP’s problem can 
be formulated to minimize the investment cost for all items:

The investment cost (Cost) is written as an exponential function of 
the unit size, is formulated in terms of the optimization variables, 
which represent the plant configuration:

      (1)

Where aj and αj, bk and βk, Cs and γs are classical cost coefficients. 
Equation (1) shows that there is no fixed cost coefficient for 
any item. This may be unrealistic and will not tend towards 
minimization of the equipment number per stage. Nevertheless, 
this information was kept unchanged in order to compare our 
results with those found in the literature (Karimi, 1989) [22].

The constraints of the problem
Variable bounding

   	 (2)

        (3)
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Volume Vj of the items of each batch stage j and treatment 
capacity Rk of each semi-continuous stage k. However, these 
variables are not continuous anymore and were discretized 
with an interval of 50 units between two possible values. This 
working mode was adopted in a view of realism. Indeed, since 
equipment manufacturers propose the items following defined 
size ranges, the design of operation unit equipment does not 
require a level of accuracy such as real number. Note, how-
ever, that the initial bounds on these size variables were kept 
unchanged, being for batch and semi-continuous, respectively: 
Vmin  and Vmax , and  Rmin and Rmax .

Item number mj in batch stage j and item number  nk in 
semi-continuous stage k. These variables cannot exceed 3 
items per stage (mj ≥  1, nk ≤ 3).

Time constraint
the total production time for all products must be lower than
a given time horizon H :

     				    (4)

Where   is the demand for product i.

Constraint on productivities 
the global productivity for product i (of the whole process) is 
equal to the lowest local productivity (of each sub-process s).

 		  (5)

These local productivities are calculated from the following 
equations:
•	 Local productivities for product   in sub-process s:

           	 (6)     

•	 Limiting cycle time for product   in sub-process s:

          	 (7)  
   
•	 where Js and Ks are, respectively, the sets of batch and 

semi-continuous stages in sub-process s.
•	 Cycle time for product   in batch stage j:

        	 (8)     

•	 Where k and k+1 represent the semi-continuous stages be-
fore and after batch stage j.

•	 Processing time of product i in batch stage j:
          	 (9)   

•	 Operating time for product   in semi-continuous stage k :

          	 (10)

•	 Batch size of product   in sub-process s :

          		  (11)

•	 Finally, the size of intermediate storage tanks is estimated 
as the greatest size difference between the batches treated 
in two successive sub-processes:

   	     (12)

Process description 
The case study is a multiproduct batch plant for the production 
of proteins taken from the literature (Montagna et al. 2000) 
[3]. This example is used as a test bench since short-cut mod-
els describing the unit operations involved in the process. The 
batch plant involves eight stages for producing four recombi-
nant proteins, on one hand, two therapeutic proteins, human 
insulin (A) and vaccine for hepatitis (B) and, on the other hand, 
a food grade protein, chymosin (C), and a detergent enzyme, 
cryophilic protease (D). As illustrate in Figure 3 the flowsheet 
of the multiproduct batch plant considered in this study. All the 
proteins are produced as cells grow in the fermenter.

Figure 2: Multiproduct batch plant for protein production.

Vaccines and protease are considered to be intracellular: the 
first microfilter 1 is used to concentrate the cell suspension, 
which is then sent to the homogenizer for microfilter 2 is used 
to remove the cell debris from the solution proteins.

The ultrafiltration 1 step is designed to concentrate the solution 
in order to minimize the extractor volume. In the liquid–liquid 
extractor, salt concentration (NaCl) is used solution in order to 
minimize the extractor volume. In the liquid–liquid extractor, 
salt concentration (NaCl) is used to first drive the product to a 
poly-ethylene-glycol (PEG) phase and again into an aqueous 
saline solution in the back extraction. Ultrafiltration 2 is used 
again to concentrate the solution. The last stage is finally chro-
matography, during which selective binding is used to better 
separate the product of interest from the other proteins. Insulin 
and chymosin are extracellular products. Proteins are separat-
ed from the cells in the first microfilter 1, where cells and some 
of the supernatant liquid stay behind. To reduce the amount of 
valuable products lost in the retentate, extra water is added to 
the cell suspension. The homogenizer and microfilter 2 for cell 
debris removal are not used when the product is extracellular. 
Nevertheless, the ultrafilter 1 is necessary to concentrate the 
dilute solution prior to extraction. The final step of extraction, 
ultrafiltration 2 and chromatography are common to both the 
extracellular and intracellular products.

On the other hand, the Figure 1 shows the allocation of inter-
mediate storage tanks. Three tanks have been selected: the first 
after the fermenter, the second after the first ultrafilter, and the 
third after the second ultrafilter.
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Results and discussion
The typical results obtained by light gradient boosted trees 
regressor (GBMs) were run 1000 epochs times starting from 
random initial population guarantees the stochastic nature of 
the algorithms with demand modeled by gaussian probability 
distribution, minimizing the cost plant. The results are devel-
oped as shown in the following Table 1: Plant Cost, Hi and 
CPU time. Neverthless, the structure of equipment was illus-
trated in Table 2. 

Min (Cost plant) 1659000 [$]
%Std 0.5%
Hi 6000(h)
CPU time <5(s)*

*CPU time was calculated to this method on Microsoft Win-
dows 10 Pro Intel(R)D CPU 2.80 Ghz, 2.99 GB of RAM.

Table 1: Results obtained by gradient boosting algorithms.

Table 2: Equipment structure according to Table 1

The total production time computed by gradient boosting al-
gorithms is 6000h to fulfill the eventual increase of future de-
mand caused by market fluctuations. The table showed also a 
very small standard deviation. In addition, gradient boosting 
algorithms results in a faster convergence (less than one sec-
ond).
On the other hand, the gradient boosting algorithms allow the 
reduction of the idle time to the stage. Table 3 shows the idle 
times obtained by boosting gradient algorithms.

Table 3: Idle Times in Plant with Parallel Units and Intermedi-
ate Storage Tanks by gradient boosting algorithms.

From these results, we can see that the results obtained by gra-
dient boosting algorithms are power.

However, since the case study has been taken from Montag-
na et al (2000) [10], they solved the problem using rigorous 
mathematical programming (MINLP) which is solved to glob-
al optimality (minimize the capital cost $829,500) with im-
plementation of the outer approximation/equality relaxation/
augmented penalty method. However in previous work (Mon-
tagna et al 2000) [10], they didn’t mentioned anything about 
CPU time, also in their model, they didn’t take into account 

operation costs. Nonetheless, their model needed a long com-
putational time and require severe initial values to the optimi-
zation variables. Montagna et al. (2000) [10], also showed in 
their paper that the behavior of the demand was completely 
deterministic. However, this assumption does not seem to be 
always a reliable representation of the reality, since in prac-
tice the demand of pharmaceutical products resulting from the 
batch industry is usually changeable.

Gradient boosting algorithms performed effectively and gave a 
solution within 0.5% of the global optimal 1659000 [$], gradi-
ent boosting algorithms provided also interesting solutions, in 
terms of quality as well as of computational time.

Furthermore, gradient boosting algorithms results in a faster 
convergence. However, gradient boosting algorithms is de-
signed to deal with problems of a more complicated as our 
problem, DMBP, successfully and the computing time(<5s) is 
more less than MINLP.

These results are important, because they demonstrate the ef-
fectiveness of gradient boosting algorithms in solving the com-
plicated design problem of DMBP, which is due to gradient 
boosting algorithms searching from population (not a single 
point), and its parallel computing nature and can be applied to 
deal with uncertain demand.

Now, some observation about some important aspects in our 
implication of gradient boosting algorithms and some prob-
lems in practice: The most important of all is the method of 
coding, because the codification is a very important issue when 
the gradient boosting algorithms is designed to deal with the 
combinatorial problem, as well as also the characteristics and 
inner structure of the DMBP. 

According to the inner structure of the design problem of 
multiproduct batch that gives us some clues for designing the 
above mixed continuous discrete coding method. As it is evi-
dent to the results of application, this coding method is well 
fitted to the proposed problem.

Our experience makes it clear that the parameter’s of gradient 
boosting machine can solve the premature problem effectively 
and conveniently.

Figure 3: Prediction distribution of crossvalidation about 
compressive strength of concrete structure.
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Figure 4: Lift crossvalidation about compressive strength of 
concrete structure.

Figure 5: Prediction and simulation of compressive strength 
of concrete structure.

Conclusions
In this paper, we describe our solution to modelling and pre-
diction of compressive strength of hydraulic concrete structure 
in multiproduct batch plant design for protein production us-
ing extreme gradient boosting regressor with grid search sup-
port. We use the extreme gradient boosting regressor with grid 
search support with early stopping. We also take advantage of 
feature engineering based on pharmaceutical process to extract 
more information. Experimental results on the contest data 
demonstrate the accuracy and effectiveness of the technique 
proposed by this paper. One of the challenge of multiproduct 
batch plant for pharmaceutical industry is the large volume of 
the data. It is also interesting to explore other function classes 
that are more significantly into pharmaceutical technology. Fi-
nally, this framework provides an interesting decision/making 
approach to improve design multiproduct batch plants under 
conflicting goals.

Appendix A. Data Set
The experimental data of DMBP based on published data 
(Datar and Rosen, 1990 ; Petrides et al. 1996 ; Andrews et al. 
1999, Asenjo and Patrick, 1990) [23-26]. The plant is divid-
ed into sub-processes, consists of six batch stages [B(1-6)] to 
manufacture in four products A,B,C,D. 

The Table shows the values for processing times τi,j(h), size 
factor for the units, cost data, and the production requirement 
for each product quantifying the uncertainty on the demand. 
Here, we assume that the demand of products A, B, C and D 
are uncertain following normal probability distribution func-
tion. The data set are summarized in the following Table A1 
and Table A2.

Table A1: Data used in the problem of batch plant design.
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Table A2: Cost coefficient.
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