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Abstract
Golden metric tensors exterior to hypothetical distribution of mass whose field varies with time and radial distance 
have been used to construct the coefficient of affine connections that invariably was used to obtained the Einstein’s 
equations of motion for test particles of non-zero rest masses. The expression for the variation of time on a clock 
moving in this gravitational field was derived using the time equation of motion. The test particles in this field 
under the condition of pure polar motion have an inverse square dependence velocity which depends on radial 
distance. Our result indicates that despite using the golden metric tensor, the inverse square dependence of the 
velocity on radial distance has not been changed.

Introduction
The geometrical theory of gravitation was first published by 
Albert Einstein in 1915/16 known as General Relativity. The 
most widely accepted theory gravitation is the General Rela-
tivity [1,2].

The search for the solutions both exact and analytical has 
been an ongoing research [1-4]. The exact solution to this 
theory of gravitation was first constructed in pure radial and 
static spherical polar coordinates in 1916 by Schwarzschild. 
In Schwarzschild’s metric, the tensor field varies with radial 
distance only. It is the metric tensor exterior to an ideal stat-
ic spherically symmetric body situated in empty space [5-9]. 
Schwarzschild’s metric is the mathematically simplest and 
most satisfactory astrophysical solution of Einstein’s geomet-
rical gravitational field equation in the space exterior to a static 
homogeneous distribution of mass within a spherical region 
[6]

Einstein’s equations are the centre piece of general relativity. 
They provide a precise formation of the relation between space 
time geometry and the properties of matter, using mathemat-
ics. More concretely, they are formulated using the concept of 
Riemannian geometry, in which the geometric properties of a 
space time are described by a quantity called a metric. The 
metric encodes the information needed to compute the fun-
damental geometric notations distance and angle in a curved 
space [10].
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In general relativity, the metric and the Riemann curvature 
tensor are quantities define at each point in space time. It is 
based on this that Howusu by postulation introduced a second 
natural and satisfactorily generalization or extension of the 
Schwarzschild’s metric tensor from the gravitational field of 
all static homogeneous spherical distribution of mass to the 
gravitational fields of all spherical distributions of mass named 
as the golden metric tensor for all gravitational field in nature 
[10-11].

Research has shown that spherical systems doesn’t depend on 
radial distance only [2], therefore in this paper we introduced 
an astrophysical system within the region of spherical geom-
etry, whose tensor fields varies with radial distance and time, 
using Golden metric tensors. The coefficients of affine connec-
tions for this field were constructed and used in the study of 
Einstein’s equations of motion for test particles of non-zero 
rest masses.

Golden metric tensors
The covariant golden metric tensors are given by [10, 12-13]
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While the contravariant metric tensors are given by [10, 12-13]
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The coefficients of affine connections [2, 6, 12, 14-15] defined 
by metric tensors of space time are generally given as
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Using the above metric tensors (1)-(10), the coefficient of 
affine connections are given as
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Equations (12) -(22) are given explicitly as
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Using the Golden metric tensors, we have obtained 10 non-
zero coefficients of affine connections unlike the 9 obtained 
in Schwarzschild field. Based on this fact, this gravitational 
field is expected to have some additional terms not found in 
Schwartzschild’s field.

Motion of test particles exterior to spherical bodies whose 
fields varies with time and radial distance
The general relativistic equation of motion for test particles in 
a gravitational field is given by [2, 6, 10,12, 16-17]
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where τ is the proper time
Setting µ = 0 into (34) gives
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Simplifying (35) gives
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Integrating (36) gives
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As t → τ ,  f (t, r) →0  and the constant 1A ≡  ,
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Setting µ =1,2,3  into (34) gives

( ) ( ) ( ) ( ) ( ) ( )1 12 2.. . . . .

2 2 2 2 2 2

, , ,1 2 2 2 1 21 , 1 , 1 ,
f t r f t r f t r

r f t r t f t r t r f t r r
r t rc c c c c c

− −∂ ∂ ∂     + + − + − + +     ∂ ∂ ∂     

( ) ( ) ( ) ( )1 12 22 2 2. .
2

2 2 2 2

, ,2 sin 21 , sin 1 , 0
f t r f t rr rr f t r r f t r

r rc c c c
θθ θ φ

− −   ∂ ∂   − + + + − + + =      ∂ ∂           	
					     (39)
For pure radial motion θ = Ø = 0
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To the limit of  co (43) reduces to
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Integrating (44) yields
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where A is constant of integration.
This motion has an inverse square dependence on the radial 

distance. Therefore the golden metric tensor to the limit of   
does not change the inverse square dependence on the radial 
distance.

Conclusion
The coefficients of affine connections for the first time are 
constructed for this field using Golden metric tensors.
The time, radial, polar and azimuthal equation of motion for 
test particles exterior to astrophysical distribution of mass 
were given in equation (35), (39), (41) and (42) respectively.
The solution of the time equation of motion (38) gives the 
variation of the time on a clock within the gravitational 
field, which is the equation for the time dilation within this 
gravitational field.

Despite using Golden metric tensors our expression for the 
time equation of motion is the same with that obtained by 
Lumbi et al., (2014). The only difference is that in Lumbi et 
al., the gravitational scalar potential is a function of radial 
time, distance and polar angle while our gravitational scalar 
potential is a function of time and radial distance only.

Equation (40) which is the radial equation of motion can be 
used to obtain the instantaneous speed of a particle of non-zero 
rest mass in this field.

The coefficient of affine connections obtained in this work can 
be used to construct the Lagrangian equation of motion, the 
Riemann-Christoffel, Ricci and Einstein’s tensors as well as 
Einstein’s geometrical field equations for this field, the field 
equation would only contain a single unknown value f (t, r) 
which can be solved completely to obtain an explicit value for 
f (t, r)
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