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Abstract
In general theory of relativity, Einstein’s field equations relate the geometry of space-time with the distribution of 
matter within it. These equations were first published by Einstein in the form of a tensor equation which related the 
local space-time curvature with the local energy and momentum within this space-time. In this article, Einstein’s 
geometrical field equations interior and exterior to astrophysically real or hypothetical distribution of mass within 
a spherical geometry were constructed and solved for field whose gravitational potential varies with time, radial 
distance and polar angle. The exterior solution was obtained using power series. The metric tensors and the 
solution of the Einstein’s exterior field equations used in this work has only one arbitrary function f(t,r,θ) , and 
thus put the Einstein’s geometrical theory of gravitation on the same bases with the Newton’s dynamical theory 
of gravitation. The gravitational scalar potential f(t,r,θ) obtained in this research work to the order of  co, c-2 ,  
contains Newton dynamical gravitational scalar potential and post Newtonian additional terms much importance 
as it can be applied to the study of rotating bodies such as stars. The interior solution was obtained using weak 
field and slow-motion approximation. The obtained result converges to Newton’s dynamical scalar potential with 
additional time factor not found in the well-known Newton’s dynamical theory of gravitation which is a profound 
discovery with the dependency on three arbitrary functions. Our result obeyed the equivalence principle of Physics. 
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Introduction
Gravitation is a natural phenomenon whose study gives a better 
understanding of the universe. On earth, it gives weight to 
physical objects and causes the ocean tides. The gravitational 
attraction of the original gaseous matter present in the Universe 
caused it to begin coalescing, forming stars and the stars to 
group together into galaxies so gravity is responsible for many 
of the large-scale structures in the Universe [1].

After the publication of Einstein’s geometrical gravitational 
field equations (EGGFE) in 1915, the search for their exact 
and analytical solutions for all the gravitational fields in nature 
began [2-4]. Schwarzchild first constructed the exact solution 
to this field equation in static and pure radial spherical polar 
coordinates in 1916 by considering astrophysical bodies such 
as the sun and the stars [5] In Schwarzchild’s metric, the tensor 
field varies with radial distance only. 

A new method and approach was introduced to formulate exact 
analytical solutions [6] as an extension of Schwarzschild’s 
method. This new approach took into consideration the fact 
that tensor field of astrophysical bodies does not depend on 
radial distance only as indicated in Schwarzschild’s equation. 
This new approach was used in several studies of Einstein’s 
geometrical field equations such as [3-8]. This method would 
help in the study of Ceres, Pluto, Makemake, Haumea, The 
Ouort Cloud and other astrosphysical bodies. In this research 
work, we show how exact analytical solution of the exterior 
and internal field equations can be constructed in the limit of 
c-2 in a gravitational field for time varying spherical massive 
bodies using the new method and approach.

Construction of the Exterior  G22 Field Equation
To construct the G22 field equation, we applied the covariant 
metric tensors for this distribution of mass or pressure in 
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spherical polar coordinates f(t,r,θ) constructed by [5-10] 
because it is also a time varying metric tensor which depends 
on radial distance and polar angle which is given as

 00 2

2 ( , , )1 .f t rg
c

θ = +  
    (2.1)

 
1

11 2

2 ( , , )1 .f t rg
c

θ −
 = − +  

     (2.2)

 g22= -r2     (2.3)
 g33 =  -r2 sin2  θ    (2.4) 
 guv = 0     (2.5) 
 

where f(t,r,θ) is an arbitrary function, determined by the mass or 
pressure and possess symmetries of the latter. In approximate 
gravitational field, it is equal to Newton’s gravitational scalar 
potential exterior to the spherical mass distribution.

To obtain the corresponding contravariant metric tensors for 
this gravitational field, the Quotient Theorem [5] of the tensor 
analysis was used to obtain the components of the contravariant 
tensor as
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1 .
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r θ

= −
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0.g µν =  otherwise    (2.10)

The coefficients of affine connections, defined by the metric 
tensors of space-time are determined [5-12] using equations 
(2.1)-(2.10),

 ( ), , ,
1 .
2

g g g gµ µξ
αβ αξ β βξ α αβ ξΓ = + −    (2.11)

They are found to be given explicitly in terms of (ct,r,θ)within 
this regionas
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 3 3
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1 .
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 3 3
23 32 cot .θΓ = Γ =      (2.27)

 0.µ
αβΓ =  ; otherwise    (2.28)

The exterior  field equation in this field is given as
           

 22 22 22
1 0.
2

G R Rg= − =       (2.29)

The choice of this component is because it’s observed that all 
the solution to the field equation towards the exterior converges 
at the same way.
The expression for the Ricci tensor R22 and the curvature scalar   
R in this field are given respectively as:

 0 1 2 3
22 220 221 222 223 .R R R R R= + + +      (2.30)

 00 11 22 33
00 11 22 33 .R g R g R g R g R= + + +    (2.31)

The expanded form of equations (2.30) and (2.31) are given as

 
0 0 0 1 0 1 1 1 1 1 1 2 1
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Explicitly equations (2.32) and (2.33) are given as
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Substituting equations (2.3), (2.34) and (2.35) into (2.29) gives
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Simplifying equation (2.36) gives
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Rearranging equation (2.37), and multiplying through with a 
negative sign gives
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  Simplifying equation (2.38) and rearranging further gives
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It has been shown that in the limit of   the wave equation (2.41) 
in the limit of weak fields reduced to:
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Equation (2.43) can also be written as
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Let us now seek a solution of equation (2.44) in the form
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θθ

∞
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∑        (2.45)

where Rn(r)  functions of r only. By obtaining the first and 
second derivatives partially of equation (2.45) for f(t,r,θ); it 
can be shown trivially that the separate terms of the expanded 
equation can be shown in the equations below:
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Comparing coefficients of 
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0 0

2( ) ( ) 0.R r R r
r
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Solving equation (2.52) to obtain the auxiliary solution for the 
second order partial differential equation gives:
 

0
2( ) .R r
r

= −          (2.53)

But according to Newton’s dynamical theory, Newton’s 
gravitational scalar potential exterior to a distribution of mass 
or pressure is given by

 
0( ) .

GM
f r

r
= −          (2.54)

Comparing equation (2.53) with Newton’s gravitational 
scalar potential (2.54) we can choose the most convenient 
astrophysical solution for (2.52) as shown below:

 
0( ) .kR r

r
≈ −          (2.55)

Where k = GM0  ; deducing from Schwarzschild’s metric and 
Newton’s dynamical theory of gravitation, G is the universal 
gravitational constant and M0 is the total mass of the spherical 
body.

Equating coefficients of exp rt
c
θ − 

 
 
yields
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1 1 0 1
1 2 4( ) 2 ( ) ( ) ( ) 0.R r R r R r R r
r c c r c

θ θ θ   + − − + + =         
      (2.56)
This is the exact differential equation for R1 and it determines  
R1 in terms of R0. Thus, the solution assumes an exact wave 
equation, which in the order of Co reduces to

 
( , , ) exp .k rf t r t

r c
θθ  ≈ − − 

 
       (2.57)

Construction of the Interior G22  Field Equation
Einstein’s field equation interior to a homogeneous spherical 
distribution of mass is given generally as [6-16]

 
4

81 .
2

GT
R Rg

c
µν

µν µν

π
− =         (2.58)

Where  the speed of light in vacuum is,  Tµv is the energy-
momentum tensor due to any distribution of mass or pressure 
and G is the universal gravitational constant.

Now, let us assume that the homogeneous mass distribution is 
in a weak field limit. We can neglect the contribution from the 
source, thus define the energy-momentum tensor given as

 21 .
2

T cµν ορ=         (2.59)
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41 .
2

G
G R Rg

c
ο

µν µν µν

π ρ
= − =        (2.60)

Where ρo is the density
c is the speed of light in vacuum.
It was observed in [13] that the exterior field equations along 
the G00, G22 and G33 converge within the exterior field, similarly 
along the interior field. 
For mathematical convenience, we choose G22
Hence the non-trivial field equation is 

 22 22 2

41 .
2

G
R Rg

c
οπ ρ

− =         (2.61)

Substituting the left hand side of equation (2.41) into equation 
(2.61) gives
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θ θ θ θθ
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θ θθ
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To the weak field limit of co, the equation reduces to

 2
2

2 2

4( , , )( , , ) .
Gf t rf t r

t c
οπ ρθ

θ
∂

∇ + =
∂

       (2.64)

Conclusion
The result obtained in (2.64) is the Newton dynamical 
scalar field equation with an additional time factor which 
signifies the dynamical nature of the system, it is indeed a 
profound discovery, it confirms our assumption in [8] that 
Newton dynamical theory of gravitation NDTG is a limiting 
case of Einstein’s geometrical gravitational field equations 
EGGFE, and this should clear the objection 7, 38,41 in [17]. 
Experimentally established equivalence principle of physics 
is shown with the dependency of the scalar function on time, 
radial distance and polar angle. 
If the pressure is negligible compared to mass density [6], 
hence
  ρ0
Our scalar potential will be

 
2

2 0
2

( , , )( , , )
GMf t rf t r

rt
θ

θ
∂

∇ + = −
∂

       (2.65)

Where GM0 = k
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The EFE reduces to Newton’s law of gravitation by using both 
weak field approximation and slow motion approximation, 
eqn. (2.60) will thus further splits to four non-linear equations 
analogous to Maxwell’s equation and could thus be applied in 
the study of the Gravitoelectric and Gravitomagnetic coupling 
phenomena.

Interestingly and remarkably, we obtain an arbitrary function 
equation (2.57) which is a function of radial distance, polar 
angle and time equal to Newton’s scalar potential, hence 
our obtained result could be apply in all the applications of 
Newton’s scalar potential with a much wider application such 
as the study of coupling effects of electromagnetism, weak 
field approximation.

The result obtained in equation (2.57) is applicable to all 2-D 
dynamical physical systems rotating about a fixed point or a 
phenomenon originating from a fixed point [18].

Furthermore the obtained result equation (2.57) differ from 
[7,6,8] in the sense that [7] is for a hypothetical systems which 
varies with azimuthal angle only, whereas [3] is for static 
homogenous oblate spheroidal systems, and [8] is for a static 
astrophysical systems which varies with radial distance and 
azimuthal angle only.

Instructively, our single dependent function f(t,r,θ) which is 
our physically and mathematically most satisfactory solution 
contains unknown post Newtonian terms or pure Einsteinian 
gravitational terms in order of co and c-2 . Hence, this research 
work has shown that the Exterior EGGFE can be obtained 
as a generalization or completion of Newton’s dynamical 
gravitational field equations.

Interestingly, we discover that the solution obtained, that is 
equation (2.57) has a particular link to the pure Newtonian 
gravitational scalar potential for the gravitational field and 
hence put Einstein’s geometrical gravitational field on the 
same level with the Newtonian dynamical theory of gravitation 
as obtained by [4,6,19].

The gravitational scalar potential obtained in this research 
work can be applied in 
• the study of rotating astrophysical bodies within a 

spherical geometry whose tensor field varies with time, 
radial distance and polar angle. Example of such bodies 
are stars such as Neutron star, Wolf-Rayet, e.t.c. 

• the study of astrophysical phenomenon such as 
gravitational red-shift by the sun, time dilation, length 
contraction, motion of particles and photons 

• the study of gravitomagnetic and gravitoelectric coupling, 
just to mention but a few.

Thus we have completely obtained the solution of EGGFE 
exterior to a homogeneous spherical bodies whose tensor fields 
varies with time, radial distance and polar angle.
 
The solutions of the Einstein’s field equations are metrics of 

space time. These metrics describe the structure of the space-
time including the inertial motion of objects in the space-time. 
As the field equations are non-linear, they cannot always be 
completely solved (that is without approximation).
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