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Evaluation of Fifty Trace Element Contents in Thyroid Adenomas
using a Combination of Instrumental Neutron Activation Analysis

and Inductively Coupled Plasma Mass Spectrometry

Introduction
Thyroid adenomas (TA) are homogenous, solitary, encapsulated 
benign tumors, more common in females, and have a good 
prognosis. However, because there is a 20% possibility of 
malignant transformation, TA should be differentiated from other 
thyroid nodular diseases such as nodular goiter (NG) and thyroid 
cancer (TC). The distinguishing between the TA and TC is tricky, 
therefore new differential diagnostics and TA biomarkers are 
needed [1]. 

For more than twenty centuries, there has been a prevailing 
view that NG, including TA, is a minor consequence of iodine 
(I) deficiency. However, NG has been found to be a frequent 
disease even in those countries and regions where the population 
is never exposed to I deficiency [2]. Moreover, it was shown that 
I excess has severe consequences on human health and associated 
with the presence of thyroidal disfunctions and autoimmunity, 
nodular and diffuse goiters, benign and malignant tumors of 
gland [3-5]. It was also demonstrated that besides the I deficiency 
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Abstract
Introduction: Thyroid adenomas (TA) are benign tumors, but there is a 20% possibility of malignant transformation. 
The distinguishing between the TA and thyroid cancer is tricky, therefore new TA biomarkers are needed. 
Furthermore, the role of trace elements (TE) in etiology and pathogenesis of TA is unclear. 

Aim: The aim of this exploratory study was to evaluate whether significant changes in the thyroid tissue levels of 
TE exist in the adenomatous transformed thyroid. 

Methods: Thyroid tissue levels of fifty TE were prospectively evaluated in 19 patients with TA and 105 healthy 
inhabitants. Measurements were performed using a combination of non-destructive and destructive methods: 
instrumental neutron activation analysis and inductively coupled plasma mass spectrometry, respectively. Tissue 
samples were divided into two portions. One was used for morphological study while the other was intended for 
TE analysis. 

Results: It was found that contents of Ag, Al, B, Cr, Fe, Hg, Mo, and Zn are significantly higher in TA than in 
normal thyroid tissues. 

Conclusion: There are considerable changes in some TE contents in adenomatous tissue of thyroid. Thus, it is 
reasonable to assume that the levels of these TE in thyroid tissue can be used as TA markers. However, this topic 
needs additional studies.
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and excess many other dietary, environmental, and occupational 
factors are associated with the NG incidence [6, 7]. Among them 
a disturbance of evolutionary stable input of many trace elements 
(TE) in human body after industrial revolution plays a significant 
role in etiology of thyroidal disorders [8]. 

Besides iodine involved in thyroid function, TE have basic 
physiological functions such as maintaining and regulating cell 
function, regulating genes, activating or inhibiting enzymatic 
reactions, and regulating membrane function [9]. The essential or 
toxic (goitogenic, mutagenic, and carcinogenic) properties of ChE 
depend on the tissue-specific need or tolerance, respectively [9]. 
Excessive accumulation or an imbalance of the ChE may disturb 
the cell functions and may result in cellular degeneration, death, 
benign or malignant transformation [9, 10]. 

In our previous studies the complex of in vivo and in vitro nuclear 
analytical and related methods was developed and used for the 
investigation of I and other ChE contents in the normal and 
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pathological thyroid [11-17]. Level of I in the normal thyroid was 
investigated in relation to age, gender and some non-thyroidal 
diseases [18, 19]. After that, variations of ChE content with age in 
the thyroid of males and females were studied and age- and gender-
dependence of some ChE was observed [20-36]. Furthermore, a 
significant difference between some ChE contents in normal and 
cancerous thyroid was demonstrated [37-42].

So far, the etiology and pathogenesis of TA has to be considered 
as multifactorial. The present study was performed to clarify 
the role of some TE in the TA etiology. With this in mind, our 
aim was to assess the silver (Ag), aluminum (Al), arsenic (As), 
gold (Au), boron (B),, beryllium (Be), bismuth (Bi), cadmium 
(Cd), cerium (Ce), cobalt (Co), chromium (Cr), cesium (Cs), 
dysprosium (Dy), iron (Fe), erbium (Er), europium (Eu), gallium 
(Ga), gadolinium (Gd), mercury (Hg), holmium (Ho), iridium (Ir), 
lanthanum (La), lithium (Li), lutecium (Lu), manganese (Mn), 
molybdenum (Mo), niobium (Nb), neodymium (Nd), nickel (Ni), 
lead (Pb), palladium (Pd), praseodymium (Pr), platinum (Pt), 
rubidium (Rb), antimony (Sb), scandium (Sc), selenium (Se), 
samarium (Sm), tin (Sn), terbium (Tb), tellurium (Te), thorium 
(Th), titanium (Ti), thallium (Tl), thulium (Tm), uranium (U), 
yttrium (Y), ytterbium (Yb), zinc (Zn), and zirconium (Zr) mass 
fraction in TA tissue using a combination of non-destructive and 
destructive methods: instrumental neutron activation analysis 
with high resolution spectrometry of Long-lived radionuclides 
(INAA-LLR) and inductively coupled plasma mass spectrometry 
(ICPMS), respectively. A further aim was to compare the levels 
of these fifty TE in the adenomatous thyroid with those in normal 
gland of apparently healthy persons.

Material and Methods

Samples
All patients suffered from TA (n=19, 16 females and 3 males, mean 
age M±SD was 41±11 years, range 22-55) were hospitalized in the 
Head and Neck Department of the Medical Radiological Research 
Centre and an informed consent was taken from the subjects. 
Thick-needle puncture biopsy of suspicious nodules of the thyroid 
was performed for every patient, to permit morphological study 
of thyroid tissue at these sites and to estimate their TE contents. 
For all patients the diagnosis has been confirmed by clinical 
and morphological results obtained during studies of biopsy 
and resected materials. Histological conclusion for all thyroidal 
lesions was the TA.

Normal thyroids for the control group samples were removed 
at necropsy from 105 deceased (mean age 44±21 years, range 
2-87), who had died suddenly. The majority of deaths were due to 
trauma. Histological examination was used in the control group to 
match the age criteria, as well as to confirm the absence of micro-
nodules and underlying cancer.

Sample preparation
All tissue samples were divided into two portions using a titanium 
scalpel [43]. One was used for morphological study while the other 
was intended for TE analysis. After the samples intended for TE 
analysis were weighed, they were freeze-dried and homogenized 
[44]. 

The pounded sample weighing about about 5-10 mg (for 

biopsy) and 50-100 mg (for resected materials) was used for TE 
measurement by non-destructive INAA-LLR. 

After INAA-LLR investigation the thyroid samples were used 
for ICP-MS. The samples were decomposed in autoclaves. 
Simultaneously, the same procedure was performed in autoclaves 
without tissue samples (only HNO3+H2O2+ deionized water), 
and the resultant solutions were used as control samples.

Certified Reference Materials
To determine contents of the TE by comparison with a known 
standard, biological synthetic standards (BSS) prepared from 
phenol-formaldehyde resins were used [45]. In addition to BSS, 
aliquots of commercial, chemically pure compounds were also 
used as standards. For quality control, ten subsamples of the 
certified reference materials (CRM) IAEA H-4 Animal Muscle 
and IAEA HH-1 Human Hair from the International Atomic 
Energy Agency (IAEA), and also five sub-samples INCT-SBF-4 
Soya Bean Flour, INCT-TL-1 Tea Leaves and INCT-MPH-2 
Mixed Polish Herbs from the Institute of Nuclear Chemistry 
and Technology (INCT, Warszawa, Poland) were analyzed 
simultaneously with the investigated thyroid tissue samples. All 
samples of CRM were treated in the same way as the thyroid 
tissue samples. Detailed results of this quality assurance program 
were presented in our earlier publications [30, 36, 42]. 

Instrumentation and methods
A vertical channel of WWR-c research nuclear reactor (Branch of 
Karpov Institute, Obninsk).was applied to determine the content 
of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and Zn by INAA-LLR. The 
mass fractions of Ag, Al, As, Au, B, Be, Bi, Cd, Ce, Co, Cr, Cs, 
Dy, Er, Eu, Ga, Gd, Hg, Ho, Ir, La, Li, Lu, Mn, Mo, Nb, Nd, Ni, 
Pb, Pd, Pr, Pt, Rb, Sb, Se, Sm, Sn, Tb, Te, Th, Ti, Tl, Tm, U, Y, Yb, 
Zn, and Zr were determined by ICP-MS method using an ICP-MS 
Thermo-Fisher “X-7” Spectrometer (Thermo Electron, USA). The 
TE concentrations in aqueous solutions were determined by the 
quantitative method using multi elemental calibration solutions 
ICP-MS-68A and ICP-AM-6-A produced by High-Purity 
Standards (Charleston, SC 29423, USA). Indium was used as an 
internal standard in all measurements. Information detailing with 
the INAA-LLR and ICP-MS methods used and other details of 
the analysis was presented in our previous publication concerning 
TE contents in human thyroid [30, 36, 42]. 

Computer programs and statistic
A dedicated computer program for INAA=LLR mode 
optimization was used [46]. All thyroid samples were prepared 
in duplicate, and mean values of TE contents were used. Mean 
values of TE contents were used in final calculation for the Ag, Co, 
Cr, Fe, Hg, Rb, Sb, Se, and Zn mass fractions measured by two 
methods INAA-LLR and ICPMS. Using Microsoft Office Excel, 
a summary of the statistics, including, arithmetic mean, standard 
deviation, standard error of mean, minimum and maximum values, 
median, percentiles with 0.025 and 0.975 levels was calculated 
for TE mass fractions. The difference in the results between two 
groups (normal and adenomatous thyroid) was evaluated by the 
parametric Student’s t-test and non-parametric Wilcoxon-Mann-
Whitney U-test. 
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Results
The comparison of our results for the Ag, Co, Cr, Fe, Hg, Rb, Sb, Se, and Zn mass fractions (mg/kg, dry mass basis) in the normal 
human thyroid obtained by both INAA-LLR and ICP-MS methods is shown in Table 1.

Element NAA-LLR 
M1

ICP-MS
M2

∆, %

Ag 0.0151±0.0016 0.0122±0.0014 19.2
Co 0.0399±0.0030 0.0378±0.0031 5.3
Cr 0.539±0.032 0.451±0.033 16.3
Fe 225±11 221±12 1.8
Hg 0.0421±0.0041 0.0794±0.0114 -88.5
Rb 7.37±0.44 7.79±0.46 -5.7
Sb 0.111±0.008 0.079±0.008 28.8
Se 2.32±0.14 2.12±0.14 8.6
Zn 97.8±4.5 91.8±4.3 6.1

Table 1: Comparison of the mean values (M±SEM) of the chemical element mass fractions (mg/kg, on dry-mass basis) in the normal 
thyroid of males and females obtained by both NAA-LLR and ICP-MS methods

Element M SD SEM Min Max Median P 0.025 P 0.975
Ag 0.0133 0.0114 0.0013 0.00160 0.0789 0.0102 0.00187 0.0333
Al 10.5 13.4 1.8 0.80 69.3 6.35 1.19 52.9
As ≤0.0049 - - <0.003 0.0200 - - -
Au ≤0.0050 - - <0.002 0.0203 - - -
B 0.476 0.434 0.058 0.200 2.30 0.300 0.200 1.73
Be 0.00052 0.00060 0.00008 0.0001 0.0031 0.00030 0.0001 0.0022
Bi 0.0072 0.0161 0.0022 0.000300 0.100 0.00270 0.000500 0.0523
Cd 2.08 2.05 0.27 0.0110 8.26 1.37 0.113 7.76
Ce 0.0080 0.0080 0.0011 0.00100 0.0348 0.00475 0.00134 0.0293
Co 0.0390 0.0276 0.0031 0.0100 0.140 0.0285 0.0130 0.124
Cr 0.495 0.261 0.031 0.130 1.30 0.430 0.158 1.08
Cs 0.0245 0.0166 0.0022 0.00220 0.0924 0.0198 0.00667 0.0723
Dy 0.00122 0.00183 0.00025 0.000300 0.0121 0.000630 0.000300 0.00519
Er 0.000377 0.000367 0.000050 0.000100 0.00220 0.000275 0.000100 0.00110
Eu ≤0.00039 - - <0.0002 0.00190 - - -
Fe 222.8 89.5 9.6 52.0 474 222 67.8 425
Ga 0.0316 0.0156 0.0021 0.0100 0.0810 0.0295 0.0100 0.0700
Gd 0.00105 0.00109 0.00015 0.000400 0.00650 0.000600 0.000400 0.00425
Hg 0.0543 0.0373 0.0043 0.00700 0.151 0.0460 0.00983 0.150
Ho ≤0.00040 - - <0.0001 0.00420 - - -
Ir ≤00.00028 - - <0.0002 0.0010 - - -
La 0.00475 0.00461 0.00062 0.000400 0.0219 0.00270 0.000400 0.0171
Li 0.0208 0.0155 0.0022 0.00150 0.0977 0.0178 0.00412 0.0487
Lu ≤0.00020 - - <0.0001 0.00100 - - -
Mn 1.28 0.56 0.07 0.470 4.04 1.15 0.537 2.23
Mo 0.0836 0.0470 0.0062 0.0104 0.299 0.0776 0.0278 0.211
Nb 0.597 0.898 0.120 0.0130 3.77 0.188 0.0130 3.26
Nd 0.0041 0.0034 0.0004 0.00020 0.0165 0.0030 0.00064 0.0137

Ni 0.449 0.344 0.046 0.0740 1.80 0.330 0.120 1.39
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Pb 0.233 0.246 0.033 0.0230 1.60 0.180 0.0328 0.776
Pd ≤0.022 - - <0.014 0.0700 - - -
Pr 0.00107 0.00086 0.00011 0.00010 0.00390 0.00073 0.00020 0.00350
Pt ≤0.00057 - - <0.00020 0.0138 - - -
Rb 7.54 3.65 0.39 1.21 22.6 6.84 3.54 17.4
Sb 0.0947 0.0692 0.0075 0.00470 0.308 0.0808 0.0117 0.279
Sc 0.0268 0.0329 0.0060 0.000200 0.0860 0.00640 0.000418 0.0860
Se 2.22 1.24 0.14 0.320 5.80 1.84 0.776 5.58
Sm 0.000507 0.000469 0.000064 0.000100 0.00210 0.000350 0.000100 0.00150
Sn 0.0777 0.0677 0.0091 0.00900 0.263 0.0550 0.00900 0.242
Tb 0.000198 0.000116 0.000016 0.0000800 0.000600 0.000150 0.000100 0.000470
Te ≤0.0057 - - <0.003 0.0185 - - -
Th ≤0.0032 - - <0.002 0.0100 - - -
Ti 3.50 3.53 0.47 0.440 14.5 2.30 0.602 13.0
Tl 0.000932 0.000511 0.000068 0.000100 0.00290 0.000900 0.000294 0.00216

Tm ≤0.00014 - - <0.0001 0.00040 - - -

U 0.000443 0.000434 0.000059 0.000100 0.00260 0.00030 0.000100 0.00131

Y 0.00260 0.00234 0.00032 0.00100 0.0110 0.00170 0.00100 0.00942

Yb ≤0.00059 - - <0.0003 0.00570 - - -

Zn 94.8 39.6 4.2 7.10 215 88.9 34.9 196

Zr ≤0.081 - - <0.03 0.480 - - -

M - arithmetic mean, SD – standard deviation, SEM – standard error of mean, Min – minimum value, Max – maximum value, 

P 0.025 – percentile with 0.025 level, P 0.975 – percentile with 0.975 level.

Table 2: Some statistical parameters of 50 trace element mass fraction (mg/kg, dry mass basis) in the normal thyroid (n=105)

Element M SD SEM Min Max Median P 0.025 P 0.975
Ag 0.181 0.180 0.050 0.00120 0.679 0.198 0.0129 0.552
Al 34.2 24.1 9.1 8.70 78.4 30.6 9.53 74.1
As <0.004 - - - - - - -
Au 0.0287 0.0293 0.0110 0.00300 0.0709 0.0240 0.00323 0.0705
B 3.38 2.74 1.12 1.00 7.30 3.00 1.00 7.01
Be 0.00181 0.00222 0.00090 0.000200 0.00600 0.00125 0.000200 0.00550
Bi 0.112 0.157 0.064 0.0113 0.422 0.0591 0.0119 0.382
Cd 2.78 2.51 0.95 0.310 6.39 3.25 0.311 6.21
Ce 0.0246 0.0174 0.0090 0.00730 0.0459 0.0225 0.00780 0.0448
Co 0.0660 0.0469 0.0135 0.0159 0.159 0.0439 0.0190 0.149
Cr 1.18 1.38 0.24 0.144 7.30 0.659 0.200 4.47
Cs 0.0216 0.0232 0.0050 0.00760 0.114 0.0147 0.00793 0.0760
Dy <0.005 - - - - - - -
Er 0.00400 0.00390 0.00200 0.00100 0.00900 0.00200 0.00100 0.00900
Eu <0.001 - - - - - - -
Fe 571 675 174 52.3 2563 368 53.4 2142
Ga 0.0223 0.0097 0.0050 0.0100 0.0300 0.0245 0.0107 0.0300
Gd <0.001 - - - - - - -
Hg 1.16 1.26 0.34 0.193 5.20 0.885 0.254 4.07
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Ho <0.0002 - - - - - - -
Ir <0.0003 - - - - - - -
La 0.0116 0.0105 0.0060 0.00540 0.0237 0.00560 0.00541 0.0228
Li 0.0401 0.0236 0.0100 0.0185 0.0680 0.0341 0.0186 0.0678
Lu <0.0002 - - - - - - -
Mn 1.67 1.88 0.54 0.100 6.12 0.805 0.210 5.50
Mo 0.233 0.145 0.055 0.0460 0.448 0.199 0.0586 0.441
Nb <0.013 - - - - - - -
Nd 0.0141 0.0047 0.0030 0.00960 0.0190 0.0137 0.00981 0.0187

Ni 3.95 3.39 1.39 0.480 9.00 3.35 0.508 8.73
Pb 1.86 3.29 1.24 0.260 9.30 0.660 0.289 8.06
Pd <0.012 - - - - - - -
Pr 0.00475 0.00345 0.00200 0.00120 0.00930 0.00425 0.00136 0.00899
Pt <0.0002 - - - - - - -
Rb 8.96 3.19 0.82 3.60 16.4 9.00 4.13 15.0
Sb 0.140 0.034 0.0449 0.466 0.105 0.105 0.0449 0.394
Sc 0.0286 0.0451 0.0140 0.000300 0.140 0.00710 0.000300 0.128
Se 3.01 2.43 0.65 0.720 10.6 2.25 0.941 8,68
Sm 0.00252 0.00263 0.00099 0.000400 0.00800 0.00140 0.000470 0.00725
Sn 0.0756 0.0443 0.0170 0.0331 0.157 0.0548 0.0360 0.151
Tb <0.0001 - - - - - - -
Te <0.007 - - - - - - -
Th 0.0229 0.0293 0.0011 0.00200 0.0783 0.00500 0.00200 0.0736
Ti <0.4 - - - - - - -
Tl 0.00238 0.00164 0.00067 0.00110 0.00540 0.00190 0.00111 0.00508

Tm <0.0003 - - - - - - -

U 0.00083 0.00035 0.00020 0.000440 0.00110 0.00095 0.000466 0.00109

Y 0.0115 0.0140 0.0060 0.00310 0.0361 0.00520 0.00312 0.0335

Yb 0.000375 0.000236 0.000118 0.000200 0.000700 0.000300 0.000200 0.000678

Zn 129 58 13 57.7 251 137 61.3 225

Zr 0.080 0.059 0.029 0.0310 0.165 0.0620 0.0333 0.157

M – arithmetic mean, SD – standard deviation, SEM – standard error of mean, Min – minimum value, Max – maximum value, P 0.025 
– percentile with 0.025 level, P 0.975 – percentile with 0.975 level.

Table 3: Some statistical parameters of 50 trace element mass fraction (mg/kg, dry mass basis) in the adenomatous thyroid

Tables 2 and 3 present certain statistical parameters (arithmetic mean, standard deviation, standard error of mean, minimal and 
maximal values, median, percentiles with 0.025 and 0.975 levels) of the Ag, Al, As, Au, B, Be, Bi, Cd, Ce, Co, Cr, Cs, Dy, Er, 
Eu, Fe, Ga, Gd, Hg, Ho, Ir, La, Li, Lu, Mn, Mo, Nb, Nd, Ni, Pb, Pd, Pr, Pt, Rb, Sb, Sc, Se, Sm, Sn, Tb, Te, Th, Ti, Tl, Tm, U, 
Y, Yb, Zn, and Zr mass fractions in normal and adenomatous thyroid tissue, respectively. The As, Au, Eu, Ho, Ir, Lu, Pd, Pt, Te, 
Th, Tm, Yb, and Zr mass fractions in normal thyroid samples were determined in a few samples. The possible upper limit of the 
mean (≤M) for these TE was calculated as the average mass fraction, using the value of the detection limit (DL) instead of the 
individual value when the latter was found to be below the DL:

nnDLCM
in

i
ji /







⋅+=≤ ∑

where Ci is the individual value of the TE mass fraction in sample -i, ni is number of samples with mass fraction higher than the 
DL, nj is number of samples with mass fraction lower than the DL, and n = ni + nj is number of samples that were investigated. 
The As, Dy, Er, Gd, Ho, Ir, Lu, Nb, Pd, Pt, Tb, Te, Ti, and Tm contents in all samples of adenomatous thyroid were under DL.
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Element Published data [Reference] This work
Median of means (n)* Min of means M or M±SD, 

(n)**
Max of means
M or M±SD, (n)**

M±SD

Ag 0.110 (1) 0.110±0.045 (16) [47] 0.110±0.045 (16) [47] 0.181±0.180
Al - - - 34.2±24.1
As 35 (2) 0.00612 (46) [48] 70.8±6.8 (4) [49] <0.004
Au - - - 0.0287±0.0293
B - - - 3.38±2.74
Be - - - 0.00181±0.00222
Bi - - - 0.112±0.157
Cd 0.522 (2) 0.172 (46) [48] 0.872±0.704 (13) [50] 2.78±2.51
Ce - - - 0.0246±0.0174
Co 46.4 (1) 46.4±4.8  (4) [49] 46.4±4.8  (4) [49] 0.0660±0.0469
Cr 76 (2) 6,00±5.32 (9) [51] 146±14  (4) [49] 1.18±1.38
Cs - - - 0.0216±0.0232
Dy - - - <0.005
Er - - - 0.00400±0.00390
Eu - - - <0.001
Fe 566 (3) 54.6±36.1 (5) [52] 2100±208 (4) [49] 571±675
Ga - - - 0.0223±0.0097
Gd - - - <0.001
Hg 79 (1) 79.2±8.0 (4) [49] 79.2±8.0 (4) [49] 1.16±1.26
Ho - - - <0.0002
Ir - - - <0.0003
La - - - 0.0116±0.0105
Li - - - 0.0401±0.0236
Lu - - - <0.0002
Mn 1.28 (4) 0.40 (46) [48] 57.6±6.0 (4) [49 1.67±1.88
Mo 0.128 (1) 0.128±0.064 (16) [47] 0.128±0.064 (16) [47] 0.233±0.145
Nb - - - <0.013
Nd - - - 0.0141±0.0047

Ni 6.5 (2) 0.580±0.384 (16) [47] 12.4±4.4 (4) [49] 3.95±3.39
Pb 2.04 (2) 0.22 (46) [48] 46.4±4.8 (4) [49] 1.86±3.29
Pd - - - <0.012
Pr - - - 0.00475±0.00345
Pt - - - <0.0002
Rb 7.0 (1) 7.0 (10) [53] 7.0 (10) [53] 8.96±3.19
Sb - - - 0.140±0.117
Sc - - - 0.0286±0.0451
Se 1.88 (4) 0.316 (46) [48] 3.16±2.88 (9) [51] 3.01±2.43
Sm - - - 0.00252±0.00263
Sn - - - 0.0756±0.0443
Tb - - - <0.0001
Te - - - <0.007
Th - - - 0.0229±0.0293
Ti* 63.6 (1) 63.6±6.4 (4) [49] 63.6±6.4 (4) [49] <0.4
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Tl - - - 0.00238±0.00164

Tm - - - <0.0003

U 0.00052 (1) 0.00052 (46) [48] 0.00052 (46) [48] 0.00083±0.00035

Y - - - 0.0115±0.0140

Yb - - - 0.000375±0.000236

Zn 68.5 (8) 23.1 (2) [54] 1236±560 (2) [51] 129±58

Zr - - - 0.080±0.059

M –arithmetic mean, SD – standard deviation, Min – minimum, Max – maximum,  (n)* – number of all references, (n)** – 
number of samples, “-“ – no information.

Table 4: Median, minimum and maximum value of means of trace element contents in thyroid adenoma according to data from 
the literature in comparison with our results (mg/kg, dry mass basis)

The comparison of our results with published data for TE mass fraction in adenomatous thyroid [47-54] is shown in Table 4.

The ratios of means and the difference between mean values of Ag, Al, B, Be, Bi, Cd, Ce, Co, Cr, Cs, Fe, Ga, Hg, La, Li, Mn, 
Mo, Nd, Ni, Pb, Pr, Rb, Sb, Sc, Se, Sm, Sn, Tl, U, Y, and Zn mass fractions in normal and adenomatous thyroid are presented in 
Table 5.

Element Thyroid tissue Ratio
Norm n=105 Adenoma n=19 Student’s t-test p ≤ U-test p Adenoma to Norm

Ag 0.0133±0.0013 0.181±0.050 0.0058 ≤0.01 13.6
Al 10.5±1.8 34.2±9.1 0.040 ≤0.01 3.26
B 0.476±0.058 3.38±1.12 0.048 ≤0.01 7.10
Be 0.00052±0.00008 0.00181±0.00090 0.210 >0.05 3.48
Bi 0.0072±0.0022 0.112±0.064 0.164 >0.05 15.6
Cd 2.08±0.27 2.78±0.95 0.501 >0.05 1.34
Ce 0.0080±0.0011 0.0246±0.0090 0.152 >0.05 3.08
Co 0.0390±0.0031 0.0660±0.0135 0.075 >0.05 1.69
Cr 0.495±0.031 1.18±0.24 0.0037 ≤0.01 2.38
Cs 0.0245±0.0022 0.0216±0.0050 0.507 >0.05 0.88
Er 0.000377±0.000050 0.00400±0.00200 0.072 >0.05 10.6
Fe 222.8±9.6 571±174 0.066 ≤0.05 2.57
Ga 0.0316±0.0021 0.0223±0.0050 0.148 >0.05 0.71
Hg 0.0543±0.0043 1.16±0.34 0.0060 ≤0.01 21.4
La 0.00475±0.00062 0.0116±0.0060 0.378 >0.05 2.44
Li 0.0208±0.0022 0.0401±0.0100 0.103 >0.05 1.93
Mn 1.28±0.07 1.67±0.54 0.488 >0.05 1.30
Mo 0.0836±0.0062 0.233±0.055 0.034 ≤0.01 2.79
Nd 0.0041±0.0004 0.0141±0.0030 0.062 >0.05 3.44
Ni 0.449±0.046 3.95±1.39 0.053 >0.05 8.80
Pb 0.233±0.033 1.86±1.24 0.239 >0.05 7.98
Pr 0.00107±0.00011 0.00475±0.00200 0.122 >0.05 4.44
Rb 7.54±0.39 8.96±0.82 0.134 >0.05 1.19
Sb 0.0947±0.0075 0.140±0.034 0.219 >0.05 1.48
Sc 0.0268±0.0060 0.0286±0.0140 0.909 >0.05 1.07
Se 2.22±0.14 3.01±0.65 0.249 >0.05 1.36
Sm 0.000507±0.000064 0.00252±0.00099 0.089 >0.05 4.97
Sn 0.0777±0.0091 0.0756±0.0170 0.917 >0.05 0.97
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Tl 0.000932±.000068 0.00238±0.00067 0.083 >0.05 2.55
U 0.000443±0.000059 0.00083±0.00020 0.184 >0.05 1.87
Y 0.00260±0.00032 0.0115±0.0060 0.229 >0.05 4.42
Zn 94.8±4.2 129±13 0.023 ≤0.01 1.36

M – arithmetic mean, SEM – standard error of mean, Statistically significant values are in bold
Table 5: Differences between mean values (M±SEM) of trace element mass fractions (mg/kg, dry mass basis) in normal and 

adenomatous thyroid
The ratios of means and the difference between mean values of Ag, Al, B, Be, Bi, Cd, Ce, Co, Cr, Cs, Fe, Ga, Hg, La, Li, Mn, 
Mo, Nd, Ni, Pb, Pr, Rb, Sb, Sc, Se, Sm, Sn, Tl, U, Y, and Zn mass fractions in normal and adenomatous thyroid are presented in 
Table 5.

Discussion

Precision and accuracy of results
A good agreement of our results for the TE mass fractions 
with the certified values of CRM IAEA H-4, IAEA HH-1, 
INCT-SBF-4, INCT-TL-1, and INCT-MPH-2, as was shown 
in previous studies [30,36,42], as well as the similarity of the 
means of the Ag, Co, Cr, Fe, Hg, Rb, Sb, Se, and Zn mass 
fractions in the normal human thyroid determined by both 
INAA-LLR and ICP-MS methods (Table 1) demonstrates 
acceptable precision and accuracy of the results obtained in the 
study and presented in Tables 2-5. 

Comparison with published data
Published data on TE of TA are very limited (Table 4). A 
number of values for TE mass fractions presented in Table 4 
were not expressed on a dry mass basis by the authors of the 
cited references. However, we calculated these values using 
published data for water (75%) [55] and ash (4.16% on dry 
mass basis) [56] contents in thyroid of adults. 

In adenomatous tissues (Table 4) our results were comparable 
with published data for Ag, Cd, Fe, Mn, Mo, Ni, Pb, Rb, 
Se, U, and Zn contents. The obtained means for As were 
approximately four order of magnitude, for Co – three order 
of magnitude, for Cr, Hg, and Ti – two order of magnitude 
lower median of previously reported means and were outside 
the range of cited means (Table 4). No published data referring 
Al, Au, B, Be, Bi, Ce, Cs, Dy, Er, Eu, Ga, Gd, Ho, Ir, La, Li, 
Lu, Nb, Nd, Pd, Pr, Pt, Sb, Sc, Sm, Sn, Tb, Te, Th, Tl, Tm, Y, 
Yb, and Zr contents of adenomatous thyroid were found.

The ranges of means of TE content reported in the literature 
for normal [30, 36, 42] and for adenomatous thyroid (Tables 
4) vary widely. This can be explained by a dependence of TE 
content on many factors, including the region of the thyroid, 
from which the sample was taken, age, gender, ethnicity, mass 
of the gland, and the adenoma stage. Not all these factors were 
strictly controlled in cited studies. Another and, in our opinion, 
the main reason for the inter-observer discrepancy can be 
attributed to the accuracy of the analytical techniques, sample 
preparation methods, and the inability to take standardized 
samples from affected tissues. It was insufficient quality 
control of results in these studies. In many reported papers 
tissue samples were ashed or dried at high temperature for 
many hours. In other cases, thyroid samples were treated 
with solvents (distilled water, ethanol, formalin etc). There 
is evidence that by use of these methods some quantities of 

certain TE are lost as a result of this treatment That concern not 
only such volatile halogen as Br, but also other TE investigated 
in the study [57,58]. 

Effect of adenomatous transformation on trace element 
contents
From Table 5, it is observed that in adenomatous tissue 
the mass fraction of Ag, Al, B, Cr, Fe, Hg, Mo, and Zn are 
approximately 13.6, 3.3, 7.1, 2.4, 2.6, 21.4, 2.8, and 1.4 times, 
respectively, higher than in normal tissues of the thyroid. In 
contrast, the mass fraction of Cd, Ga, and Sn are 39%, 34%, 
and 41%, respectively, lower. Thus, if we accept the TE 
contents in thyroid glands in the control group as a norm, we 
have to conclude that with a adenomatous transformation the 
levels of Ag, Al, B, Cr, Fe, Hg, Mo, and Zn in affected thyroid 
tissue significantly increased. 

Role of trace elements in adenomatous transformation of 
the thyroid
Characteristically, elevated or reduced levels of TE observed in 
adenomatous thyroid are discussed in terms of their potential 
role in the initiation and promotion of TA. In other words, 
using the low or high levels of the TE in adenomatous tissues 
researchers try to determine the role of the deficiency or excess 
of each TE in etiology TA. In our opinion, abnormal levels of 
many TE in TA could be and cause, and also effect of benign 
transformation. From the results of such kind studies, it is 
not always possible to decide whether the measured decrease 
or increase in TE level in pathologically altered tissue is the 
reason for alterations or vice versa.

Our findings show that mass fraction of Ag, Al, B, Cr, Fe, 
Hg, Mo, and Zn are significantly different in TA as compared 
to normal thyroid tissues (Tables 5). Thus, it is plausible to 
assume that levels of these TE in affected thyroid tissue can be 
used as TA markers. However, this subjects needs in additional 
studies. 

Limitations
This study has several limitations. Firstly, analytical techniques 
employed in this study measure only fifty TE mass fractions. 
Future studies should be directed toward using other analytical 
methods which will extend the list of TE investigated in normal 
thyroid and adenomatous thyroid tissue. Secondly, the sample 
size of TA group was relatively small. It was not allow us to 
carry out the investigations of TE contents in TA group using 
differentials like gender, histological types of adenoma, stage 
of disease, and dietary habits of healthy persons and patients 
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with TA. Lastly, generalization of our results may be limited 
to Russian population. Despite these limitations, this study 
provides evidence on adenoma-specific tissue Ag, Al, B, Cr, 
Fe, Hg, Mo, and Zn level alteration and shows the necessity the 
need to continue TE research of adenomatous thyroid.

Conclusion
In this work, TE measurements in tissue samples from normal 
thyroid and TA were performed using two useful analytical 
methods: non-destructive neutron activation analysis with high-
resolution long-lived radionuclide spectrometry and inductively 
coupled plasma mass spectrometry. The combination of these 
methods has been shown to be a suitable analytical tool for the 
determination of fifty TE (Ag, Al, As, Au, B, Be, Bi, Cd, Ce, 
Co, Cr, Cs, Dy, Er, Eu, Fe, Ga, Gd, Hg, Ho, Ir, La, Li, Lu, Mn, 
Mo, Nb, Nd, Ni, Pb, Pd, Pr, Pt, Rb, Sb, Sc, Se, Sm, Sn, Tb, Te, 
Th, Ti, Tl, Tm, U, Y, Yb, Zn, and Zr) in tissue samples from 
healthy and affected human thyroid, including needle biopsy 
samples. It was observed that the content of Ag, Al, B, Cr, 
Fe, Hg, Mo, and Zn in adenomatous thyroid tissues increased 
significantly. In our opinion, the presented study data strongly 
suggest that TE plays an important role in thyroid health and 
the etiology of TA. It was assumed that the differences in TE 
levels in affected thyroid tissue could be used as TA markers.
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