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Abstract
Numerical model for a defect-containing lattice of microcavities with embedded ultracold atomic clusters (quantum 
dots) is developed. It is assumed that certain fractions of quantum dots are absent, which leads to transformation of 
polariton spectrum of the overall structure. The dispersion relations for polaritonic modes are derived as functions 
of structure defects concentrations and elastic strain. It is shown that, as a result of elastic strain of the system and 
presence of structural defects under study, it is possible to achieve necessary changes in its energy structure (and, 
therefore, optical properties) determined by the rearrangement of the polariton spectrum.
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Introduction
The important features of photonic band-gap structures 
under discussion (Milonni, 2005) are connected with ‘slow’ 
light, which is one of the promising fundamental physical 
phenomena that can be explored in the design of various 
quantum optical storage devices. In particular, the effective 
reduction of the group velocity demonstrated in the associated 
optical waveguide resonators (Yang et al., 2005; Gersen 
et al., 2005) as well as in the different types of solid-state 
semiconductor multilayer structures (Turukhin et al., 2002). 
Key role in reducing the group velocity in these systems is 
played by so-called light and dark polaritons, which are linear 
superposition of photon states of the external electromagnetic 
field and the macroscopic (coherent) perturbations of two-level 
atomic medium.

In atomic systems, the lifetime of polaritons limited by lifetime 
of the excited atoms and is usually characterized by nanoscale 
(Vogl & Weitz, 2008). The present level of development of 
nanotechnologies and nanophotonics makes it possible to 
study the “slow” light and the phase transitions of polaritons 
by creating an array of coupled microcavities containing two-
level atoms (Aoki et al., 2006; Hartmann et al., 2006; Zhou et 
al., 2007). Technologically, the data structures can be obtained 
based on photonic crystals with defects as microcavities doped 
with two-level atoms (Joannopoulos et al., 2008). 
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In the context of this class of problems, a spatially periodic 
atomic structure - polaritonic crystal formed by ensembles 
of atomic clusters (quantum dots) interacting with the 
localized electromagnetic field in a tunnel connected array of 
microcavities is proposed in the paper. A remarkable feature 
of this structure is the possibility of localization of polaritons, 
which is similar to the possibility of localization of light in 
photonic crystals in nonlinear optics (see, eg, [9]) or the 
localization of excitons in quasi-periodic structures in solid 
state physics (Albuquerque & Cottam, 2004). 

Based on the representations of the ideal photonic structures 
developed previously (Alodjants et al., 2010), the non-ideal 
system of this class - the polaritonic crystal with the atomic 
subsystem containing the impurity atom clusters is considered 
in the paper. In this context, a rapidly developing research 
sub-area is the photonics of imperfect structures. Some of 
our previous works have been devoted to the design of multi-
microcavity structures (Rumyantsev et al., 2014) where the 
dispersion of photon modes may be altered by introduction 
of a defect in the photonic supercrystal (Rumyantsev et al., 
2014; Rumyantsev et al., 2016; Rumyantsev et al., 2018; 
Rumyantsev, 2018). For applications, the structural defects 
in super crystals are less practical than temporary defects 
introduce by application of external fields or strain. In the 
present work we consider the effect of a uniform elastic strain 
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on one-dimensional arrays of microcavities with embedded 
quantum dots. This system combines advantages of an extreme 
optical non-linearity provide by the coupling of quantum dots 
to photonic modes and the high sensitivity of the optical eigen-
modes to the applied strain. We focus on particular realization 
of topologically ordered micropores system composed by 
tunnel-coupled micropores containing and without quantum 
dots (atomic cluster). Such systems have a high potentiality for 
applications in optical integrated circuits.

Theoretical Background
Basing on the approach developed in Refs. (Rumyantsev et 
al., 2014; Rumyantsev et al., 2014; Rumyantsev et al., 2016; 
Rumyantsev et al., 2018; Rumyantsev, 2018), let us consider 
the dispersion of optical Eigen modes in the most general case 
of a microcavity supercrystal composed of  sublattices. Each 
of tunnel-coupled microcavities is assumed to confine a single 
optical mode. The assumption of a low density of excited 
states of structural elements in the resonator and atomic 
subsystems makes it possible to describe the quadratic part 

ˆ exH  of Hamiltonian, which describes elementary excitations 
in a microcavity chain (containing quantum dots or otherwise) 
within the Heitler-London approximation (Agranovich, 1968). 
In the one-level model, taking into account the uniform elastic 
deformation in the system, ˆ exH  is dependent on the deformation 
tensor that is sensitive to the applied strain. Adapting the 
Heitler-London approximation and a single-level model, the 
Hamiltonian ( )ˆ ˆexH ε  can be written as:

 
( ) ( ) ( ) ( ) ( ),

, , , , , , ,
,

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ,exH D Dλσ λσ
α β αλ βσ αβ αλ βσ

α β α β λ σ
λ σ

ε ε ε+ += Φ Φ = Φ Φ∑ ∑n m n m
n m

k

k k k

						      (1)
where

( ) ( ) ( )11 22
, , , , , ,ˆ ˆ ˆ, ,at phD V D Aα β α α β α β α β α α β α βε ω δ ε ω δ ε= + = −n m n n m n m n m n n m n m 

( ) ( ) ( )12 21
, , ,ˆ ˆ ˆD D gα β α β α α βε ε ε δ= =n m n m n n m  
2 1ˆ ˆˆ ˆ, Bλ λ

α α α α
= =Φ = Ψ Φ =n n n n 			   (2)

In Eqs.(1,2) ph
αωn  is the frequency of the photonic mode 

localized in the n α-th lattice site (microcavity), ˆ ˆ,α α
+Ψ Ψn n  are 

bosonic creation and annihilation operators for this mode 
written in the node representation, at

αωn is excitation energy of 
the quantum dot in the n α-th lattice site, ˆ ˆ,B Bα α

+
n n  are creation 

and annihilation operators of quantum dot excitons, ( )ˆA α β εn m  
is the matrix of resonance interaction, which describes an 
overlap between optical fields of resonators in the n α-th and 
m β-th lattice sites and hence defines the jump probability 
of the corresponding electromagnetic excitation, ( )ˆV α β εn m  
is the matrix of resonance interaction between quantum dots 
embedded in the n α-th and m β-th lattice sites, is the matrix 
of resonance interaction between quantum dot in the n α--th 
lattice site and electromagnetic field localized at the same 
site. Values 1 and 2 of indices  indicate, ,λ σ  respectively, the 
presence or absence of quantum dots in corresponding cavities.

In the right-hand side expression of Eq. (1) (summation over k) 
matrices ( )ˆ,Dλσ

αβ εk  and ( )αλΦ k have the forms

( ) ( ) ( )ˆ ˆ, expD D iλσ λσ
αβ α β α βε ε  = ⋅ − ∑ n m n m

m
k k r r

and 

( ) ( )1ˆ ˆ exp i
Nαλ αλ αΦ = Φ − ⋅∑ n n

n
k k r

 (N is the number of elementary cells in the lattice). Such 
representation of matrices is possible due to preservation of 
the translation invariance of the system under the uniform 
strain. Let us note that the wave vector, which characterizes 
eigenstates of electromagnetic excitations, ranges within the 
first super crystal Brillouin zone, whose boundaries are in their 
turn functions of strain through the dielectric tensor ε.

Eigenvalues of the Hamiltonian (1) are found by its 
diagonalization through the Bogolyubov-Tyablikov 
transformation (Agranovich, 1968). This yields the following 
equation for elementary excitation spectrum ( )ˆ,εΩ k :

 ( ) ( )ˆ ˆdet , , 0Dλσ
αβ αβ λσε ε δ δ− Ω =k k                 (3)

On the basis of this equation below we investigate in detail the 
spectrum of exciton-polariton modes in a non-ideal lattice of 
tunnel-coupled micropores with embedded quantum dots.

Results and Discussion
Exciton-like excitations in a non-ideal one-dimensional 
microcavity lattice. 
Let us first consider electromagnetic excitations (the so-called 
exciton-like excitations [13]) localized in a two-sublattice 
one-dimensional lattice of a tunnel connected microcavities 
without quantum dots (in this case 12 21

, , 0n m n mD Dα β α β= = ).

In the absence of elastic deformation of the lattice within the 
nearest-neighbour approximation the corresponding spectrum 
ω(k)  follows from relations (1)-(3):

 
( ) ( )

( ) ( )
1 1 2 12 1 2

21 1 2 2 1 2

, , , ,
0

, , , ,

ph

ph

k C C A k C C
A k C C k C C

ω
ω

− Ω −
=

− − Ω
 

 
               (4)

Numerical evaluation of the quantities, which define the 
spectrum peculiarities shall be performed for the values of 
resonant photonic modes localized at lattice sites

1 2 311ph THzω π= ×  and 2 2 331ph THzω π= ×
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(a)

(b)
Figure 1: Concentration dependence ω±(k, C1,C2)  for : a)  
C1=0,3 and b) concentration dependence of the band gap width 

Δω(C1,C2).

Similarly, to Ref. (Rumyantsev et al., 2018) it is assumed that
( ) 14

12 1 0 / 2 3,5 10A a Hz= ⋅    , ( ) 14
12 2 0 / 2 1,2 10A a Hz= ⋅    ,

13
11 / 2 1 10V Hz= ⋅ , ( ) (1) 7

1 10 1 10a a m−= = ⋅  .
( ) (1) 7

2 20 3 10a a m−= = ⋅ w h e r e ( ) ( ) ( )1 20 0 0d a a= +  
. Numerically computed surfaces in Fig.1a describe the 
dispersion dependence of frequencies ( )1 2, ,k C C±Ω of the 
studied collective excitations. We remind that  ranges within 
the first Brillouin zone ( ) ( )1 2 1 2, ,

k
d C C d C C

π π
− < < . Fig.1b depicts 

concentration dependence of the corresponding band gap 
width ( ) ( ) ( )1 2 1 2 1 2, min , ,

k
C C C C C C+ −∆Ω ≡ Ω −Ω    .

Polaritonic excitations in a one-dimensional two-sublattice 
non-ideal microcavity lattice
Basing on the general theory developed in Section 2 let us 
proceed to consider quasi-particle (polaritonic) excitations 
in a two-sublattice one-dimensional microcavity lattice (see 
Fig. 2) with same-type quantum dots embedded in one of the 
sublattice (e.g. in the first one, i.e. α = β = 1 ). 

Figure 2: Schematic of the non-ideal two-sublattice one-
dimensional microcavity array with quantum dots embedded 

in the first sublattice

In the absence of elastic deformation of the lattice (within the 
nearest neighbour approximation) the relations (1)-(3) yield 
the following equation for the elementary excitation spectrum 
ω(k):

 

( ) ( )
( )

( ) ( )
( ) ( )

1 11 1

1 1 12

21 2

0 0
0 0 0

0 0 ,

at

ph

ph

V k k g

g k A k
A k k

− − Ω
−Ω

− Ω −
− − Ω

 

 

 

						         (5)
Since composition of quantum dots is not being varied 
the parameter of resonant interaction between a quantum 
dot and electromagnetic field localized at a same site is 
always the same. Calculation of quantities, which define the 
spectrum shape of polaritonic excitations was performed for 
the above data and excitation frequency of quantum dots 

2 2 202at THzω π= ⋅  . Also similarly to Ref. (Rumyantsev et al., 
2018) we put 13

11 / 2 1 10V Hz= ⋅ , 12
1 5 10g Hz= ⋅ . Fig. 3a, b 

shows surfaces, which describe the dispersion dependence of 
polaritonic frequencies ( )1,2,3 1 2, ,k C CΩ  in the two-sublattice 
microcavity array with quantum dots embedded in one of 
the sublattice (surfaces are numbered bottom-up). The wave 
number k ranges as always within the first Brillouin zone 

( ) ( )1 2 1 2, ,
k

d C C d C C
π π

− < <  (shaded region in the plane 1(2)( , )k C  in 

Figs. 3а, b).

Let us note that the presence of local minima at 0k ≠  in the 
dispersion surface ( )3 1 2, ,k C CΩ in Figs. 3 (as well as in Fig. 
2) indicates the possibility of existence (for certain defect 
concentrations) of Bose-Einstein polaritonic condensate for 
non-zero k’ s (in addition to Bose-Einstein condensation at k=0 
at the corresponding minima in surfaces ( )1,2 1 2, ,k C CΩ ).

  
(a)
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(b)
Figure 3: Dependence of polariton dispersion ( )1,2,3 1 2, ,k C CΩ   
on structural defect concentration plotted for various values 
of parameter 1 /g g≡  responsible for the resonant interaction 
between a quantum dot and electromagnetic field localized at a 
same site (arrows indicate the effect of changing g on the width 

of the so-called “bottle neck”

The band gap widths of polaritonic spectrum                     
( ) ( ) ( )12(23) 1 2 2(3) 1 2 1(2) 1 2, min , ,

k
C C C C C C ∆Ω ≡ Ω −Ω    are 

plotted as functions of concentrations of structural defects in 
Figs. 4a, b.

(a)

(b)
Figure 4: Dependences ( )12(23) 1 2,C C∆Ω  of the band gap 
widths on structural defect concentrations: a) ( )12 1 2,C C∆Ω   , 

b) ( )23 1 2,C C∆Ω  .

Exciton-like excitations in a one-dimensional two-sublattice 
microcavity array under a uniform elastic deformation
To develop our model let us consider a one-dimensional 
microcavity lattice subjected to elastic stress (extension or 
compression) directed along the chain. Under a uniform 
deformation described by tensor each cavity changes its 
position and so the lattice constant ( )d ε  can be written as:

	 ( ) ( ) 01 ,d dε ε= + 		               (6)
where do is the lattice constant of a strain-free structure, and 
is the corresponding component of tensor ἐ. The necessary for 
finding the electromagnetic spectrum reciprocal lattice constant 
b(ε) can therefore be obtained from the obvious relation:
 
              ( ) ( ) 2b dε ε π⋅ =   			               (7)

In what follows we shall assume that the microcavity array 
is constituted by two sublattices. Position of microcavities is 
defined by the equality ( ) ( ) ( )n nr r rα αε ε ε= + , and therefore their 
positions in the zeroth cell of the first and second sublattices 
( 0 0nr = = ) are, correspondingly: 01 0r =  and ( ) ( )02r aε ε= . The 
spectrum of exciton-like excitations ( ),k εΩ  is found from 
relation (3):

     ( ) ( )
( ) ( ) ( )

1 12

21 2

, ,
0

, ,

ph

ph

k A k
A k k
ε ω ε

ε ε ω ε
Ω −

=
Ω −

 

 
            (8)

Quantities ( ),A kαβ ε  in Eq. (8) are Fourier-transforms 
of matrix ( )n mA α β ε   of resonance interaction:   

( ) ( ) ( ) ( ){ }, expn m n m
m

A k A ik r rαβ α β α βε ε ε ε = − ∑ . In the frames of 
our model and within the nearest-neighbour approximation 
matrix elements assume the following form:

 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

12 12 12

21 21 21

, exp exp ,

ˆ, exp exp

A k A a ik a A d a ik d a

A k A a ik a A d a ik d a

ε ε ε ε ε ε ε

ε ε ε ε ε ε ε

≅ − ⋅ + − − ⋅ −              

= ⋅ + − ⋅ −              

						       (9)
According to Ref. (Rumyantsev et al., 2016), quantities 

( )12(21)A a ε   , which are components of matrix ( )n mA α β ε  of 
resonance interaction corresponding to nearest neighbours 
equal to ( ) ( ) ( ) ( ) ( )12 21 12 21 expA a A aε ε= −   , 

( ) ( ) ( ) ( )12(21) 12(21)A d a A d a expε ε ε− = − −   . In our case we put 
( ) ( )12 21A a A a� , ( ) ( )12 21A d a A d a− −�  Relation (8) shows 

that the dispersion law ( ),k εΩ  of elementary electromagnetic 
excitations is determined both by frequency characteristics of 
resonator array and by the explicit form of ( ),A k ε , as well as 
by the nature of deformation (e.g. by a uniaxial extension 	
ε > 0 or ε < 0 contraction ).

Further calculations were performed for a uniaxial deformation 
of a uniform isotropic one-dimensional medium. The following 
modelling parameters were adopted: frequencies of resonance 
photonic modes in cavities (independent of deformation ε) 
were put equal to 1 2 211ph THzω π= ×  and 2 2 310ph THzω π= ×   
and ( ) 14

12 2 0.9 10A a Hz= ⋅  , ( ) 14
12 2 1.2 10A d a Hz− = ⋅   . 
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71 10a m−= ⋅ , 
79 10d m−= ⋅  Fig. 5 shows the dependencies 

( ) ( ), , 1, 2kν ε νΩ =  for deformed one-dimensional lattice 
for various values of ε . Shaded region in the ( k, ε )-plane 
corresponds to the first Brillouin zone.

An important property of band gap photonic structures is their 
ability to produce the so-called “slow light”. It has important 
application in designing quantum optical information 
processing devices. The effective decrease of quasiparticle 
group velocity was shown to occur in coupled wave-guide 
optical resonators (Yang et al., 2005) and in various types of 
multilayer semiconductor structures (Turukhin et al., 2002). 
A key role in decreasing the group velocity is played by the 
character of quasiparticles’ effective mass Fig. 6 depicts the 

dependence of the effective mass ( )
( )

1
2

2
0

,
eff

k

k
m

k
ν

ν

ε
−

=

 ∂ Ω
=  

∂  


 
of the considered exciton-like excitations on the degree of 
deformation. It follows from this graph that a careful choice of 
permits to attain the necessary parameters of the “slow light”.
It is often important to know how peculiarities of the spectrum 
are manifested in quasiparticle density of states ( ),νρ εΩ , 
which obviously should depend on the degree of deformation 
(v = 1;2 ). According to Ref. (Rumyantsev et al., 2014) in our 
case functions ( ),νρ εΩ are defined as:

  
( ) ( )

( )
1ˆ,

2 ,

i

i

k

d
d k

dk

ν
ν

ε
ρ ε

π ε
Ω =

Ω∑ 			   (10)

where ki are the roots of equation ( )kνΩ = Ω   .

Fig.ure 5: Dispersion surfaces ( )1(2) ,k εΩ of the deformed two-
sublattice microcavity array subjected to a uniform elastic 

strain 

Figure 6: Dependence of the effective masses of exciton-like 
excitations on the degree of deformation in a two-sublattice 

microcavity array
	

Figure 7: Variation of the density of polaritonic states ( ),ρ ε± Ω
in the lower and upper dispersion bands in a two sublattice 

microcavity array under elastic deformation.

Calculation in (8) is carried out for values of wave vector  
falling within the first Brillouin zone. Densities of states ( )νρ Ω
of quasiparticles in upper and lower dispersion branches are 
plotted in Fig. 7 for several values of ε.

Array of microcavities containing quantum dots under a 
uniform elastic deformation.
As next example, let’s consider polaritons in a one-sublattice 
quantum-dot-containing chain of unevenly spaced microcavities 
under a uniform elastic deformation. We consider the array 
of identical cavities with randomly embedded quantum dots 
of two types, whose concentrations are, correspondingly 

( )1
CC  and ( )2

CC . It is assumed, in addition, that microcavities 
are unevenly spaced; namely that ( )1

TC neighbouring pairs of 
cavities are separated by distance a1(ε) and the remaining ( )2

TC
pairs are separated by distance a2(ε). Here we also adopt the 
virtual crystal approximation (Ziman, 1979; V. F. Los, 1987) 
based on the diagonalization of the averaged Hamiltonian (1). 
The corresponding procedure yields a system of uniform linear 
equations, whose solvability condition is given by:

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

,
, ,

0
, ,

at
n nC T CC

ph
n C T

V k k g

g A k k

ω ε ε ε ε

ε ω ε ε ε

+ − Ω
=

− − Ω

 

 

						         (11)
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where 
2

1

at at
n CC

Cν
ν

ν

ω ω
=

=∑ , ( ) ( )1 2(1) (2)
n C CC

g g C g C= +

 (it is implied that ( ) ( )1 2 1C CC C+ = ,and hence 
( ) ( )1 21C C CC C C= − ≡  );

( ) { }( )
2

,
, 1

, , v
T C CC T

V k V k C C Cνµ µ

ν µ

ε
=

= ∑
 

{ }( ) ( ) { }( ), , , exp ,T nm nm TT
m

V k C V ikr Cν µ νµε ε ε =  ∑
 

Similarly, { }( ) ( ) { }( ), , exp ,T nm nm TT
m

A k C A ikr Cε ε ε =  ∑

where { }( ) { }( )( ), ,nm T Tr C d C n mε ε= − , ( ( ) ( )1 2 1T TC C+ = , 
( ) ( )1 21T T TC C C= − ≡ ).

Angular brackets in (6) denote the procedure of configuration 
averaging of the microcavity array over all possible positions 
of cavities (index “T”) and compositions of quantum dots 
(index “C”). { }( ),Td C ε  is the period of the “virtual” one-
dimensional microcavity lattice obtained by averaging 

{ }( ) ( ) ( ) ( ) ( )1 2
1 2,T T Td C C a C aε ε ε= + .

Within the nearest-neighbour approximation, the quantities 
{ }( ), ,TV k C ε , { }( ), ,TA k C ε

 can be found as:

 

{ }( )
{ }( )

{ }( )
{ }( )

{ }{ }
, ,, ,

2 cos ,
, , , ,

T
T

T

V CT

CT

dV k C
kd C

A k C A d

νµνµ

νµ νµ

ε εε
ε

ε ε ε

      =             
						          (12)
It follows from (11) that the dispersion relation { }( ), , ,C Tk C C εΩ
of polariton modes is defined by frequency characteristics 
of the cavities and the dots as well as by the explicit form 
of expressions { }( ), ,TA k C ε and { }( ), , ,TV k Cν µ ε .In the 

framework of our model, the functions { }( ), ,CTA d ε ε 
   

and { }( ), ,CTV dνµ ε ε 
  of the strain degree and the defect 

concentrations are assumed (for a2(ε) > a1(ε) ) to be equal to:

{ }( )
{ }( )

( )
( )

{ }( ) ( )
( )

0

0

11 exp
11

, , ,|

|, ,

V C C aV aT T
aaCT

d d

AA d

νµ νµ
ε

ε

ε ε ε ε
ε

εε ε

=

=

−

      −     = −             

						          (13)
0 11 |a aε = ≡ , 2 0 2|a aε = ≡ .Quantities ( ) ( )1 1,A a V aνµ  characterize 

an overlap of optical fields of neighbouring cavities and an 
interaction between neighbouring quantum dots in a one-
dimensional lattice with period  , respectively. Such a lattice 
is chosen to be a reference one for the subsequent variation of 
distances between resonators.

The numerical calculations were carried out for the following 
modelling values of parameters. The frequency of cavity-
localized resonance photonic modes was put equal to 

122 203 1280 10ph THz Hzω π= × ≈ ⋅  ; the two types of quantum 

dots were assumed to be characterized by the exciton resonance 
frequencies and 12

1 2 191 1200 10at THz Hzω π= ⋅ ≈ ⋅  and 
12

2 2 202 1269 10at THz Hzω π= ⋅ ≈ ⋅  whereas 132 8 10A Hz= ⋅ ,
11 132 1 10V Hz= ⋅ , 22 133 10V Hz= ⋅ , 12 21 136 10V V Hz≈ = ⋅ ,
(1) 125 10g Hz= ⋅

, (2) 121.5 10g Hz= ⋅
 

(within the adopted approximation the magnitude of resonance 
interaction of a quantum dot with an electromagnetic field 
localized at the same cavity is independent of deformation). 
The lattice periods were set equal to a1 = 3.10-6 m and 	
a2 = 7.10-6 m. The two dispersion branches ( ), ,C Tk C C±Ω  of 
the considered collective excitations in the microcavity array 
are plotted in Figs. 8a, b for several values of CC and CT. Let 
us remind that ranges between the values of the corresponding 
values:

( ) ( ) ( ) ( ) ( ) ( )2 1 2 2 1 2T T

k
a C a a a C a a

π π
ε ε ε ε ε ε

− ≤ ≤ +
+ − + −          	

						         (14)
Whereas CT ranges between 0 to 1.

(a) 

Figure 8: Dispersions ( ), ,C Tk C C±Ω  of polaritonic excitations 
in a one-sublattice quantum-dot-containing chain of unevenly 
spaced microcavities plotted for different values of the dot 

concentrations Cc ,CT .
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It should be noted that the shape of the dispersion curve in Fig. 
5a indicates the existence of Bose-Einstein exciton condensate, 
where the energy minima occur for a number of states with 
non-zero k’ s (in addition to those with k = 0 ).

Conclusion
The theoretical study of the photonic band structure of non-ideal 
lattices of tunnel-coupled microcavities shows that subjecting 
the system to the controllable elastic strain and presence of 
structural defects are an effective tool for altering its eigen 
mode structure and optical properties. This applies both for 
the cases of a microcavity arrays with embedded quantum dots 
and for quantum-dot-free lattices (Rumyantsev et al., 2014; 
Rumyantsev et al., 2016; Rumyantsev et al., 2018; Rumyantsev 
et al., 2019; Rumyantsev et al., 2022). The strain and the 
structural defects lead to the increase of the effective mass of 
the propagating photon modes in the structure and hence to 
the decrease of their group velocity. This results in formation 
of slow light mode that can be efficiently controlled by the 
externally applied strain. The obtained results demonstrate 
the possibility of controlling the group velocity of excitations, 
which is responsible for signaling rates in optical integrated 
circuits of optoelectronic devices. Numerical simulations 
performed on the basis of the constructed model contribute 
to modelling of the new class of functional porous materials, 
namely the so-called polaritonic systems (microcavity 
arrays with embedded quantum dots) where controlling of 
propagation of electromagnetic excitations is accomplished 
by an appropriate introduction of structural defects and elastic 
deformation.
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