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Abstract
The design of composite and reinforced or armed materials is a requirement of the modern level of production 
and life. In previous works (Bogdanov, 2022; Bogdanov, 2022; Bogdanov, 2022; Bogdanov, 2022), the plane 
problems of non-stationary interaction of a bullet-type impactor with the upper surface of a composite reinforced 
two-layers base, which consists of an upper thin layer of steel and a lower main layer of glass, was investigated. 
It is of interest to study the question of how a composite material composed of several two-layers composite bases 
laid on top of each other and rigidly bonded to each other will behave. In this work, we study the non-stationary 
interaction of a striker and a four-layers composite material reinforced with two thin steel layers. The four-layers 
base is obtained from two identical two-layers bases rigidly linked to each other. Such a four-layer material along 
its lower surface is rigidly linked to an absolutely hard half-space. The main layers of the material consist of glass. 
The use of glass in composites is promising due to the fact that glass is a durable, cheap, widespread material 
that does not corrode, and its strength properties do not degrade as a result of aging, creep like other materials, 
especially metals. The problem of glass brittleness is overcome by hard contact between the layers. In this case, 
the tops of micro cracks, micro pores on the surfaces of glass and steel are immobilized and do not propagate 
into the layers. An absolutely solid impactor acts from above in the centre on a small area of initial contact. The 
problem of a plane strain state of a beam made from the composite reinforced four layers material is being solved. 
A technique for solving dynamic contact problems in a dynamic elastic-plastic mathematical formulation is used. 
To consider the physical nonlinearity of the deformation process, the method of successive approximations is used, 
which makes it possible to reduce the nonlinear problem to a solution of the sequences of linear problems.
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Introduction
In (Bogdanov, 2023; Bogdanov, 2022; Bogdanov, 2022; 
Bogdanov, 2022; Bogdanov, 2022), a new approach to solving 
the problems of impact and nonstationary interaction in the 
elastoplastic mathematical formulation was developed. In 
these papers like in non-stationary problems (Bogdanov, 2023; 
Bogdanov, 2022; Bogdanov, 2022; Bogdanov, 2022; Bogdanov, 
2022), the action of the striker is replaced by a distributed 
load in the contact area, which changes according to a linear 
law. The contact area remains constant. Such an elastoplastic 
formulation makes it possible to consider the hardening of the 
material in the process of nonstationary and impact interaction.
 
The solution of problems for composite cylindrical shells 
(Lokteva et al., 2020), elastic half-space (Igumnov et al., 
2013), elastic layer (Kuznetsova et al., 2013), elastic rod 
(Fedotenkov et al., 2019; Vahterova & Fedotenkov, 2020) were 
developed using method of the influence functions (Gorshkov 
& Tarlakovsky, 1985).

Keywords: Plane, strain, stress, state, impact, composite, armed, reinforced, material, elastic-plastic, deformation.

In contrast from the work (Bogdanov, 2022; Bogdanov, 2022; 
Bogdanov, 2022; Bogdanov, 2022; Bogdanov, 2018), in this 
paper, we investigate the impact process of hard body with 
plane area of its surface on the top of the composite beam 
which consists of first and third thin metal layers and second 
and fourth main glass layers (Fig. 1). The fields of parameter 
Odquist and stresses were determined relative to the number 
of layers.

Problem Formulation
Deformations and their increments (Bogdanov, 2012; 
Mahnenko, 1976), Odquist parameter p

idκ ε= ∫  ( p
iε  is plastic 

deformations intensity), effective and principal stresses are 
obtained from the numerical solution of the dynamic elastic-
plastic interaction problem of infinite composite beam 
{ / 2 / 2;0 ; }L x L y B z− ≤ ≤ ≤ ≤ −∞ ≤ ≤ ∞  in the plane of 
its cross section in the form of rectangle. It is assumed that 
the stress-strain state in each cross section of the cylinder is 
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the same, close to the plane deformation, and therefore it is 
necessary to solve the equation for only one section in the 
form of a rectangle Σ = L x B with four layers: first steel layer 
{ / 2 / 2; ;L x L z− ≤ ≤ −∞ ≤ ≤ ∞ , 1 }B h y B− ≤ ≤ ,second glass layer 
{ / 2 / 2;L x L− ≤ ≤ , 1; / 2 }z B y B h−∞ ≤ ≤ ∞ ≤ ≤ −  third steel layer 
{ / 2 / 2; ;L x L z− ≤ ≤ −∞ ≤ ≤ ∞  2/ 2 / 2}B h y B− ≤ ≤ and fourth 
glass layer { / 2 / 2;L x L− ≤ ≤  2;0 / 2 }z y B h−∞ ≤ ≤ ∞ ≤ ≤ −  
contacts absolute hard half-space{ y ≤ 0 }, here h1, h2 are 
thicknesses of first and third steel layers as at Fig. 1. We assume 
that the contacts between layers are ideally rigid.

From above on a body the absolutely rigid drummer contacting 
along a segment {|x| ≤ A; y = B}. Its action is replaced by 
an even distributed stress -P in the contact region, which 
changes over time as a linear function P = p01 + P02t . Given the 
symmetry of the deformation process relative to the line 	
x = 0, only the right part of the cross section is considered 
below (Fig. 1). The calculations use known methods for 
studying the quasi-static elastic-plastic (Bogdanov, 2012; 
Mahnenko, 1976; Mahnenko, 2003; Mahnenko, et al., 2009) 
model and the dynamic elastic-plastic model (Bogdanov, 
2023), considering the non-stationarity of the load and using 
numerical integration implemented in the calculation of the 
dynamic elastic model (Bogdanov, 2023; Bogdanov, 2022; 
Bogdanov, 2022; Bogdanov, 2022; Bogdanov, 2022).

Figure 1: Geometric scheme of the problem

The equations of the plane dynamic theory are considered, for 
which the components of the displacement vector u = (ux, uy) 
are related to the components of the strain tensor by Cauchy 
relations:

         

1,   ,   .
2

y yx x
xx yy xy

u uu u
x y y x

ε ε ε
∂ ∂ ∂ ∂

= = = + ∂ ∂ ∂ ∂ 
         
The equations of motion of the medium have the form:
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where ρ − material density.

The boundary and initial conditions of the problem have the 

form:
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The determinant relations of the mechanical model are based 
on the theory of non-isothermal plastic flow of the medium 
with hardening under the condition of Huber-Mises fluidity. 
The effects of creep and thermal expansion are neglected. Then, 
considering the components of the strain tensor by the sum of 
its elastic and plastic components (Kachanov, 1969; Collection: 
Theory of plasticity IL, 1948), we obtain expression for them:

   
1,  ,   .

2
p pe e

ij ij ij ij ijij ijd s d s K
G

ε ε ε ε λ ε σ ϕ= + = = + +       (4)

here ij ij ijs σ δ σ= −  – stress tensor deviator; ijδ  – Kronecker 
symbol; Е – modulus of elasticity (Young’s modulus); 	
G – shear modulus; K1 = (1-2v)/ (3E), K = 3K1– volumetric 
compression modulus, which binds in the ratio ɛ = Kσ 
+ ϕ volumetric expansion (thermal expansion ϕ = 0); 

( ) 3xx yy zzσ σ σ σ= + +  − mean stress; dλ – some scalar function 
(Bogdanov, 2023; Mahnenko, 1976), which is determined 
by the shape of the load surface and we assume that this 
scalar function is quadratic function of the stress deviator  Sij 
(Kachanov, 1969; Collection: Theory of plasticity IL, 1948).
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The material is strengthened with a hardening factor ƞ* 
(Bogdanov, 2023; Mahnenko, 1976):

  

*
02 0

02 0 0
0

( )( )( ) ( ) 1 ,  ,S
TTT T

E

η
σκσ σ ε

ε
 

= + = 
 

    (6)

where T – temperature; k  – Odquist parameter, T0 = 20oC, 	
ƞ*  – hardening coefficient; σs(T) – yield strength after 
hardening of the material at temperature T.
Rewrite (4) in expanded form:

( ) ,   ( ) ,
2 2

( ) ,   ,
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						      (7)
In contrast to the traditional plane deformation, when 	
∆ɛzz(x,y) = const, for a refined description of the deformation 
of the specimen, taking into account the possible increase in 
longitudinal elongation ∆ɛzz, we present in its form (Bogdanov, 
2023; Mahnenko, 1976; Collection: Theory of plasticity IL, 
1948):

    0( , ) ,zz zz x yx y x yε ε χ χ∆ ∆ ∆ ∆= + + 		  (8)
where unknown ∆χx and ∆χy describe the bending of the 
prismatic body (which simulates the plane strain state in the 
solid mechanics) in the Ozx and Ozy planes, respectively, and 
∆ɛ0

zz – the increments according to the detected deformation 
bending along the fibres x = y = 0.

Solution Algorithm
Let the nonstationary interaction ((Bogdanov, 2023; Bogdanov, 
2022; Bogdanov, 2022; Bogdanov, 2022; Bogdanov, 2022; 
Bogdanov, 2012) occur in a time interval *[0, ]t t∈ .Then for 
every moment of time t:
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For numerical integration over time, Gregory’s quadrature 
formula (Boli &Waner, 1964) of order  m1 = 3 with coefficients 
Dn was used. After discretisation in time with nodes 

*[0, ] ( 0, )kt k t t k K= ∆ ∈ = for each value k we write down 
the corresponding node values of deformation increments:
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The solution of the system (10) gives expressions for the 
components of the stress tensor at each step [1]:
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Function Ψ = 1/(2G) + ∆λ, which is characterizing the yield 
condition, taking into account (8), (9), (11) is:
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Considering when calculating the value ∆ɛp
zz, we found that 

its impact is so small that without reducing the accuracy of 
calculations can be considered ∆ɛp

zz = 0.

To take into account (Bogdanov, 2023; Mahnenko, 1976) the 
physical nonlinearity contained in conditions (12), the method 
of successive approximations is used, which makes it possible 
to reduce a nonlinear problem to a sequence of linear problems 
(Bogdanov, 2023; Mahnenko, 1976):
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						         (13)
where Q – the value of the largest deviation of the stress 
intensity σi

(n) in step n from the strengthened yield strength; 
n – is the approximation number.

Unknown (Boli & Waner, 1964), ∆χx, ∆χy and ∆ɛ0
zz in (8) are 

determined from the conditions of equilibrium of even with 
respect to x normal stresses σzz.

  ( , ) , ( 1, , ),zz x y dxdy M x yρσ ρ ρ
Σ

= =∫∫ 		     (14)

When M1 = Mx = My = 0 ; where M1– projection on the axis Oz of 
the main vector of contact stresses, and Mx, My – corresponding 
projections of the main moment of the forces acting on the 
resistance (no torsion, as noted). Given the symmetry of the 
problem and ( , ) ( , )zz zzx y x yσ σ= −  this equation in case of 	
p = x  is satisfied automatically.

If we substitute (8) and (12) in (14), taking into account the 
symmetry of the integration domain with respect to x and the 
even of functions , ,, ,xx k yy k zzbσ σ , we have ∆χx = 0. A system 
of linear algebraic equations is obtained for the calculation of 
∆ɛ0

zz , ∆χy:
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The stresses and strains used above were determined for each 
unit cell from the numerical solution at each point in time 	
tk = k∆t.

Numerical Solution
For this problem the explicit scheme of the finite difference 
method was used with a variable partitioning step along the 
axes Ox (M elements) and Oy (N elements). The step between 
the split points was the smallest in the area of the layers contact 
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and at the boundaries of the computational domain. Since the 
interaction process is fleeting, this did not affect the accuracy in 
the first thin layer, areas near the boundaries, and the adequacy 
of the contact interaction modelling.

The use of finite differences (Hemming, 1972) with variable 
partition step for wave equations is justified in (Zukina, 2004), 
and the accuracy of calculations with an error of no more than 
( )2 2 2( ) ( ) ( )O x y t∆ ∆ ∆+ + where ∆x, ∆y and ∆t – increments of 

variables: spatial x and y and time t. A low rate of change in the 
size of the steps of the partition mesh was ensured. The time 
step was constant.

The resolving system of linear algebraic equations with a 
banded symmetric matrix was solved by the Gauss method 
according to the Cholesky scheme.

In (Weisbrod & Rittel, 2000), during experiments, compact 
samples were destroyed in 21–23ms. The process of 
destruction of compact specimens from a material of size 
and with contact loading as in (Weisbrod & Rittel, 2000) was 
modelled in a dynamic elastoplastic formulation as plane strain 
state, considering the unloading of the material and the growth 
of a crack according to the local criterion of brittle fracture. 
The samples were destroyed (Bogdanov, 2023) in 23ms. 
This confirms the correctness and adequacy of the developed 
formulation and model.

The thickness of steel layers are the same h1= h2 = 0.5mm. Figs. 
2 – 10 show the results of calculations of two layers specimens 
with a hardening factor of the material ƞ* = 0,05. The first 
upper and third layers have made from hard steel. The second 
and fourth main layers have made from quartz glass. Contacts 
between four layers are an ideal. Calculations were made at 
the following parameter values: temperature T = 50oC; 	
L = 60mm; B = 10mm; the contact zone was equal  a = 2A = 
0.05mm, ∆t = 3.21-10-8 s; p01 = 8MPa; p02 = 10MPa; M = 62; 
N = 115. The smallest splitting step was 0,005 mm, and the 
largest 2, 6 mm ( min 0.005 x mm∆ = ; min 0.02 y mm∆ = ; (only the 
first layer); max 2.6 x mm∆ = ; max 0.4 y mm∆ = ). The cells of the 
grid of partitions by coordinate x with the largest size were at 
the outer side boundaries of the sample, which are located far 
from the contact area.

              
           Fig. 2. 4 layers. Odquist 

Fig. 3. 4 layers. Odquist 
parameter K  when t = t2

            parameter K  when t = t1

           
        Fig. 4. 4 layers. Odquist 
         parameter K  when t = t3

       
       Fig. 6. 4 layers. Stress σxx  
                when t = t2

      
           Fig. 8. 4 layers. Stress σyy  
                        when t = t1

Fig. 5. 4 layers. Stress σxx  
           when t = t1

Fig. 7. 4 layers. Stress σxx  
             when t = t3

Fig. 9. 4 layers. Stress σyy  
          when t = t2
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              Fig. 10. 4 layers. 
           Stress σyy when t = t3

           
       Fig. 12. 2 layers. Odquist 
       parameter K  when t = t2

         
     Fig. 14. 2 layers. Stress σxx  
                        when t = t1

Fig. 11. 2 layers. Odquist 
parameter K  when t = t1

Fig. 13. 2 layers. Odquist 
parameter K  when t = t3

Fig. 15. 2 layers. Stress σxx  
                        when t = t2

       
     Fig. 16. 2 layers. Stress σxx  
                        when t = t3

              
       Fig. 18. 2 layers. Stress σyy  
                        when t = t2

Figs. 2 – 4 and 11 – 13, 5 – 7 and 14 – 16, 8 – 10 and 17 – 19 
show the fields of the Odquist parameter K, normal stresses 
σxx   and σyy at times t1 = 2.92-10-6 s, t2 = 3.95-10-6 s and 	
t3 = 4.56-10-6 s, respectively.

The Odquist parameter as an integral value of the intensity of 
differential of plastic deformation characterizes the summary 
plastic deformation.

Figs. 2 – 19 show that the summary plastic deformations in the 
first upper layer of the steel material in the case of four layers 
base are bigger than in the steel layer in case of two layers base 
at the times t1, t2 and t3 , respectively, by 37%, 70% and 78%.

The largest absolute values of normal stresses σxx and σyy in the 
cases of four layers and two layers materials which occur in 
the first upper layer of the steel material are about the same and 
have difference by about 3%. These Figs. show areas where 
the normal stresses in layers are tensile. This is due to the fact 
that compressive stresses arise in the upper layer quickly and 

Fig. 17. 2 layers. Stress σyy  
                        when t = t1

Fig. 19. 2 layers. Stress σyy  
                        when t = t3
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the contact between the layers and the contact of the lower 
boundary of the lower layer with an absolutely rigid half-space 
are ideally rigid.

From Fig. 2 – 4, 11 – 13 it can be seen that a thicker layer of the 
main glass material of the composite base with a thickness of 
0.95mm in the case of a two-layers base withstands the process 
of non-stationary interaction and loading better than a thinner 
upper layer of glass with a thickness of 0.45mm in the case of 
a four-layers composite material.

However, in the case of four layers, the summary plastic 
deformation, and absolute values of stresses in the upper first 
steel layer and the first upper glass layer located between two 
thin steel layers are significantly larger than in investigated 
two-layers base with twice thicker glass layer. Perhaps the 
layers of steel located more deep in the composite base can be 
made thinner compared to the first upper layer of steel. It also 
seems logical to use thinner layers of glass at a greater depth 
of the base. This will lighten the composite material. These 
assumptions require further investigation.

Conclusions
The developed methodology of solving dynamic contact 
problems in an elastic-plastic dynamic mathematical 
formulation makes it possible to model the processes of 
impact, shock, and non-stationary contact interaction with the 
four-layers elastic composite base adequately. In this work, 
the process of impact on a four-layers base, consisting of two 
two-layers bases which consist of an upper thin layer of metal 
and a lower main layer of glass, is adequately modelled, and 
investigated. The fields of summary plastic deformations and 
normal stresses arising in the base are calculated and compared 
to the corresponding values from the corresponding problem 
of plane strain state of two-layers composite base. The upper 
metal layer of the composite four-layers base takes on the 
main load. The results obtained make it possible to design the 
narrow strips of new composite reinforced armed materials. 
Such a four-layer reinforced composite material can be used as 
a wide range of needs of modern industry.
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