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Abstract
A generalized approach was developed for solving contact problems in a dynamic elastic-plastic formulation. 
For the design of composite and reinforced materials, a technique for solving dynamic contact problems in 
more adequate an elastic-plastic mathematical formulation is used. To consider the physical nonlinearity of the 
deformation process, the method of successive approximations is used, which makes it possible to reduce the 
nonlinear problem to a solution of the sequences of linear problems. The problem of a plane strain state of a beam 
made from the composite reinforced two-layer material is being solved. The reinforced or armed composite material 
consists of three materials: metal of top thin layer, the main material of glass and the reinforcing crystalline seven 
fibers of basalt. Glass is a non-crystalline, often transparent amorphous solid, that has widespread practical and 
technological use in the modern industry. Glass has high strength and is not affected by the processes of aging 
of the material, corrosion, and creep. In addition, this material is cheap and widely available. The reinforced 
composite beam is rigidly linked to an absolutely solid base and on which an absolutely solid impactor acts from 
above in the centre on a different size of the area of initial contact. 
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Introduction
The use of a generalized approach to solving dynamic contact 
problems in an elastic-plastic formulation makes it possible to 
use it to solve contact problems for a body of arbitrary shape, 
which is subjected to an arbitrary distributed over the contact 
zone or shock loading.

Since glass is a cheap, ubiquitous material that is not 
susceptible to corrosion and aging and creep processes, like 
metals and alloys, the study of composite materials containing 
glass is relevant and actual. Glass is also convenient in that it 
can be poured into the frame of the reinforcement and thus can 
be further strengthened. As reinforcing elements, metal wire, 
polysilicate, polymer, polycarbon, crystalline compounds, 
which can have a fairly small thickness, can be used.

In (Bogdanov, 2023; Bogdanov, 2022; Bogdanov, 2022; 
Bogdanov, 2023; Bogdanov, 2023), a new approach to solving 
the problems of impact and nonstationary interaction in the 
elastoplastic mathematical formulation was developed. In 
these papers like in non-stationary problems (Bogdanov, 
2023; Bogdanov, 2022; Bogdanov, 2022; Bogdanov, 2023; 
Bogdanov, 2023), the action of the striker is replaced by a 
distributed load in the contact area, which changes according 
to a linear law. The contact area remains constant. 
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The solution of problems for composite cylindrical shells 
(Lokteva et al., 2020), elastic half-space (Igumnov et al., 
2013), elastic layer (Kuznetsova et al., 2013), elastic rod 
(Fedotenkov et al., 2019; Vahterova & Fedotenkov, 2020) were 
developed using method of the influence functions (Gorshkov 
& Tarlakovsky, 1985).

In (Bogdanov, 2022; Bogdanov, 2022; Bogdanov, 2023; 
Bogdanov, 2023) dynamic interaction process of plane hard 
body and two layers reinforced composite material was 
investigated and the fields of summary plastic deformations 
and normal stresses arising in the base are calculated using 
plane strain (Bogdanov, 2022; Bogdanov, 2022; Bogdanov, 
2023; Bogdanov, 2023) and plane stress (Bogdanov, 2022; 
Bogdanov, 2023) states models. In (Bogdanov, 2022) results 
depend on the size of the area of an initial contact between 
the impactor and the upper surface of the base and depend on 
the thickness of the top metal layer of the composite base. In 
(Bogdanov, 2022) results were calculated depending on the 
material of top layer of the composite base. Composite bases 
reinforced by steel, titanium and aluminium top layers were 
investigated. In (Bogdanov, 2023) the problem of plane strain 
state of four-layer composite reinforced base was solved.
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In contrast from the work (Bogdanov, 2022; Bogdanov, 2022; 
Bogdanov, 2023; Bogdanov, 2023; Bogdanov, 2018), in these 
papers, we investigate the impact process of hard body with 
different size of plane area of its surface on the top of the 
composite beam which consists main glass layer reinforced 
by seven crystalline basalt fibers and thin metal layer which 
reinforcing main material from the top.

Problem Formulation
Deformations and their increments (Bogdanov, 2023), 
Odquist parameter p

idκ ε= ∫  ( p
iε  is plastic deformations 

intensity), stresses are obtained from the numerical solution 
of the dynamic elastic-plastic interaction problem of infinite 
composite beam { / 2 / 2;0 ; }L x L y B z− ≤ ≤ ≤ ≤ −∞ ≤ ≤ ∞ , 
in the plane of its cross section in the form of rectangle. It is 
assumed that the stress-strain state in each cross section of the 
beam is the same, close to the plane deformation, and therefore 
it is necessary to solve the equation for only one section in the 
form of a rectangle L BΣ = ×  with three materials: thin top 
metal layer, main glass layer { / 2 / 2; ;L x L z− ≤ ≤ −∞ ≤ ≤ ∞  }B h y B− ≤ ≤ , { / 2 / 2; ;L x L z− ≤ ≤ −∞ ≤ ≤ ∞ 0 }y B h≤ ≤ −

and seven reinforcing crystalline basalt fibres 1{ ;x b≤ ,
1{ ; ;i ib x b z+≤ ≤ −∞ ≤ ≤ ∞ 1 1 1}B h y B− ≤ ≤  ( 2;4;6)i = . The 

contact between top metal layer and glass, glass and basalt 
fibres is ideally rigid. The main glass layer contacts absolute 
hard half-space { 0}y ≤ . We assume that the contact between 
the lower surface of the reinforced glass base and the absolute 
hard half-space is ideally rigid.

From above on a body the absolutely rigid drummer contacting 
along a segment { ; }x A y B≤ = . Its action is replaced by an 
even distributed stress -P in the contact region, which changes 
over time as a linear function 01 02P p p t= + . Given the 
symmetry of the deformation process relative to the line x = 
0, only the right part of the cross section is considered below 
(Fig. 1). The calculations use known methods for studying the 
quasi-static elastic-plastic (Bogdanov, 2023; Mahnenko, 1976; 
Mahnenko, 2003; Mahnenko et al., 2009) model, considering 
the non-stationarity of the load and using numerical integration 
implemented in the calculation of the dynamic elastic model 
(Bogdanov, 2023; Bogdanov, 2022; Bogdanov, 2022; 
Bogdanov, 2023; Bogdanov, 2023).

Fig. 1: Geometric scheme of the problem

The equations of the plane dynamic theory are considered, for 
which the components of the displacement vector u = (ux, uy) 
are related to the components of the strain tensor by Cauchy 
relations:
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The equations of motion of the medium have the form:

       			   (1)

where  ρ − material density.

The boundary and initial conditions of the problem have the 
form:
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						      (3)
The determinant relations of the mechanical model are based 
on the theory of non-isothermal plastic flow of the medium 
with hardening under the condition of Huber-Mises fluidity. 
The effects of creep and thermal expansion are neglected. 
Then, considering the components of the strain tensor by the 
sum of its elastic and plastic components (Bogdanov, 2023; 
Mahnenko, 1976), we obtain expression for them:

       			   (4)

here Sij = σij - δij σ – stress tensor deviator; δij – Kronecker symbol; 
Е– modulus of elasticity (Young's modulus); G – shear modulus; 
K1 = (1-2v)/(3E), K = 3K1 – volumetric compression modulus, 
which binds in the ratio ε = Kσ+ϕ volumetric expansion 3ε 
(thermal expansion 0φ ≡ ); ( ) 3xx yy zzσ σ σ σ= + +  − mean 
stress; dλ – some scalar function (Mahnenko, 1976), which is 
determined by the shape of the load surface and we assume 
that this scalar function is quadratic function of the stress 
deviator Sij (Bogdanov, 2023; Mahnenko, 1976), which has 
form as in (Bogdanov, 2023; Bogdanov, 2022; Bogdanov, 
2022; Bogdanov, 2023; Bogdanov, 2023).

It should be noted that the developed algorithm makes it 
possible to use the function which describes area of plastic 
fluidity not only in the form of a quadratic function (in this 
case, we obtain the plastic fluidity condition in the Huber-
Mises form), however also in the form of a function containing 
terms of third and higher power. This statement requires further 
research.
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The material is strengthened with a hardening factor  
as in (Bogdanov, 2023; Bogdanov, 2022; Bogdanov, 2022; 
Bogdanov, 2023; Bogdanov, 2023; Mahnenko, 1976; 
Mahnenko, 2003; Mahnenko et al., 2009).

Bogdanov, 2022; Bogdanov, 2023; Bogdanov, 2023; 
Mahnenko, 1976; Mahnenko, 2003; Mahnenko et al., 2009).

The solution algorithm is similar as in (Bogdanov, 2023; 
Bogdanov, 2022; Bogdanov, 2022; Bogdanov, 2023; 
Bogdanov, 2023).

Numerical Solution
For both problems the explicit scheme of the finite difference 
method was used with a variable partitioning step along the 
axes Ox (M elements) and Oy (N elements). The step between 
the split points was the smallest in the area of the layers contact 
and at the boundaries of the computational domain. Since the 
interaction process is fleeting, this did not affect the accuracy in 
the first thin layer, areas near the boundaries, and the adequacy 
of the contact interaction modelling.

The use of finite differences (Zukina, 2004) with variable 
partition step for wave equations is justified in [20], and 
the accuracy of calculations with an error of no more than 
( )2 2 2( ) ( ) ( )O x y t∆ ∆ ∆+ +  where Δx, Δy and Δt – increments of 

variables: spatial x and y and time t.  A low rate of change in 
the size of the steps of the partition mesh was ensured. The 
time step was constant.

The resolving system of linear algebraic equations with a 
banded symmetric matrix was solved by the Gauss method 
according to the Cholesky scheme.

In Weisbrod and Rittel, (2000), during experiments, compact 
samples were destroyed in 21 –23ms. The process of destruction 
of compact specimens from a material of size and with contact 
loading as in (Weisbrod & Rittel, 2000) was modelled in 
a dynamic elastoplastic formulation as plane strain state, 
considering the unloading of the material and the growth of 
a crack according to the local criterion of brittle fracture. The 
samples were destroyed in 23ms. This confirms the correctness 
and adequacy of the developed formulation and model.

Figs. 2 – 19 show the results of calculations of one layer 
specimens with a hardening factor of the material * 0,05η = . 
The main material has made from quartz glass. The reinforcing 
fibres have made from basalt. Contact between glass and basalt 
is an ideal. Calculations were made at the following parameter 
values: temperature T = 50 oC; L = 20 mm; B = 5 mm; h = 0.5 
mm; h1= 0.1 mm; Δt = 3.21.10-8 s; p01 = 8 MPa; p02 = 10 MPa; 
M = 94, N = 103. The smallest splitting step was 0,02 mm, and 
the largest 0,82 mm  (Δxmin= 0, 02 mm, Δymin= 0, 02 mm (only 
the first layer); Δxmax= 0, 82 mm ; Δymax= 0, 05 mm); b1 = h1/2; 
b2 = 1, 05 mm ; b4 = 2, 15 mm ; b6 = 3, 25 mm ; bi = bi-1 + h1,  	
(i = 3,5,7); contact zone was equal a = 2A = a1 = 3mm.

Let us define the problems of plane strain state for one-layer 
and two-layer composite materials reinforced with basalt fibers 
as case 1 and case 2 respectively.

Figs. 2 – 10 and 11 – 19 show results for cases 1 and 2 
respectively. Figs. 2 – 4, 11 – 13; 5 – 7, 14 – 16; 8 – 10, 17 – 19 
show the fields of the Odquist parameter κ , normal stresses  
σxx,  and σyy at times t1 = 3.24.10-6 s ,  t2 = 3.85.10-6 s  and t3 = 
4.49.10-6 s , respectively.

As can be seen from Fig. 2–19, the greatest plastic deformations 
and stresses occur directly under the striker and in the area near 
the reinforcing fibers, which work as concentrators, leading 
to the redistribution of the resulting contact disturbances. If 
a layer of glass is reinforced with a top layer of steel, then 
these stresses and deformations have a structure more similar 
to waves in the top layer. The compressive stress is greater 
when the top layer of steel is missing.

The Odquist parameter at the moments of time t1, t2, t3 in case 
1 is greater than the corresponding values in case 2 by 98%, 
88% and 78%, respectively. The maximal absolute values of 
the compressive stresses σxx at times t1, t2 in case 1, are greater 
than the corresponding values in case 2 by 30% and 16%, 
respectively. These values differ by 1% at a time t3.

The maximal absolute value compressive stresses σyy in case 1 
are greater at the moments of time t1, t2 and less at the moment 
of time t3 than the corresponding values in case 2 by 33%, 15% 
and 14%, respectively.

In case 1, tensile stresses do not occur at the moments of time  
t1, t2 and at the moment of time t3 normal tensile stresses σxx  
and σyy are 3.37 and 3.1 times less, respectively, than in case 2. 
This indicates that the two-layer composite material resists to 
the contact load better.

  
Fig. 2: Odquist parameter 
K when   a = a1 and t = t1

Fig. 3: Odquist parameter 
K when   a = a1 and t = t2
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Fig. 4: Odquist parameter 
K when a = a1 and t = t3

Fig. 5: Stress σxx 
when a = a1 and t = t1

Fig. 6: Stress σxx 
when a = a1 and t = t2

Fig. 7: Stress σxx 
when a = a1 and t = t3

Fig. 8: Stress σyy 
when a = a1 and t = t1

Fig. 9: Stress σyy 
when a = a1 and t = t2

Fig. 10: Stress σyy 
when a = a1 and t = t3

Fig. 11: Odquist parameter  K 
when a = a1 and t = t1

Fig. 12: Odquist parameter  K 
when a = a1 and t = t2

Fig. 13: Odquist parameter  K 
when a = a1 and t = t3

Fig. 14: Stress σxx 
when  a = a1 and t = t1

Fig. 15: Stress σxx 
when  a = a1 and t = t2
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Figs. 2 – 19 show that the highest stresses occur in the area close to the upper surface of the specimen and near basalt fibres and 
the process of accumulation of plastic deformations is more intense there. These Figs. show areas where the normal stresses in 
layers are tensile. This is due to the fact that the contacts between the layer and fibres and the lower boundary of the specimen 
with an absolutely rigid base are ideally rigid.

At Figs. 2 – 4, 11 – 13 it can be seen that the greatest plastic deformations occur in a thin layer under the contact zone. Figs. 
5 – 10 and 14 – 19 show how stresses are concentrated in the vicinity of crystalline basalt fibres which work as concentrators of 
these stresses.

Fig. 16: Stress σxx 
when  a = a1 and t = t3

Fig. 17: Stress σyy 
when  a = a1 and t = t1

Fig. 18: Stress σyy 
when  a = a1 and t = t2

Fig. 19: Stress σyy 
when  a = a1 and t = t3

Conclusions
The developed methodology of solving dynamic contact 
problems in an elastic-plastic dynamic mathematical 
formulation makes it possible to model the processes of impact, 
shock and non-stationary contact interaction with the elastic 
composite base adequately. In this work, the process of impact 
on a two-layer glass base reinforced by row of seven crystalline 
basalt fibres and thin steel layer is adequately modelled and 
investigated relative to the small enough contact area size. The 
fields of parameter Odquist and normal stresses arising in the 
base are calculated. The numerical results confirm the need to 
strengthen the glass layer with a thin layer of steel/metal on the 
upper surface of the base (Bogdanov, 2022; Bogdanov, 2022; 
Bogdanov, 2023; Bogdanov, 2023). The row of seven basalt 
fibres inside the glass layer redistribute the stresses and plastic 
deformations that occur in such composite base. Normal 
stresses are concentrated in the areas of crystalline basalt fibres 
and top steel layer. The results obtained make it possible to 
design the narrow strips of new composite reinforced armed 
materials.
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