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Abstract
The fast development of nanoscience and material chemistry has increased interest in researching new and 
innovative synthesis methods to produce new nanomaterials. Among different nanomaterials, a wide variety of 
these materials reveal high intrinsic enzyme-like activity. Due to their high catalytic efficiency and stability, the 
new field of nanozyme-based catalysis, which has been introduced as an alternative to enzyme-based catalysis, 
is called nanozyme chemistry. On the other hand, nanozymes are known as nanomaterials with high enzyme-like 
activity and can be used to simulate enzymatic reactions in harsh environmental conditions. This article aimed 
to present a brief introduction on the nanozyme-based chemistry with emphasizing on the historical overview of 
recent nanozymatic sensors.
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Nanozyme Chemistry and Nanozymes Application
Most of identified enzymes are proteins which are commonly 
introduced as catalysts of chemical reactions in biological 
environments (i.e., bioctatalysts). The key feature of these 
biocatalysts is their high catalytic efficiency and substrate 
specificity which make them suitable for playing a specific 
role in biochemistry. Among different types of enzymes, 
peroxidase enzymes, especially horseradish peroxidase 
(HRP), are attractive enzymes from both industrial and 
clinical points of view. In real world, practical application of 
peroxidase enzyme in industrial reactions as the biocatalyst 
is an interesting filed. Up to now, several researches on these 
enzymes are carried out to provide useful information about 
the enzyme structure, and its functional groups, reaction 
pathway, and active sites (Huang et al., 2019; Wu et al., 2019; 
Liang & Yan, 2019; Wei & Wang, 2013; Wang et al., 2020; 
Zhang et al., 2021; Wang et al., 2016; Jiao et al., 2020; Liu 
& Liu, 2017; Wang et al., 2020; Dong et al., 2020; Hormozi 
Jangi, 2023; HORMOZI JANGI & Akhond, 2020; Dehghani 
et al., 2024; Hormozi Jangi & Gholamhosseinzadeh, 2023; 
Jangi & Akhond, 2021; Thakkar et al., 2010; Hajipour et al., 
2012; Hormozi Jangi, 2023; Hormozi Jangi, 2023). Regarding 
the peroxidase enzymes, the enzyme specific substrate is 
hydrogen peroxide (HP) while their function is catalyzing 
the oxidation of a hydrogen-donating substrate (for example, 
benzidine). More precisely, hydrogen peroxide is the initiator 

of the peroxidase-mediated reactions. In fact, oxidation of 
a wide range of organic compounds (substrates) including 
aromatic amines, phenols, and their mixtures can be initiated 
in the presence of hydrogen peroxide or other hydroperoxides 
and HRP as enzymes. Many chromogenic substrates have been 
defined as secondary substrates of horseradish peroxidase due 
to its low selectivity to electron-donating compounds. These 
chromogenic substrates are called chromogenic electron 
donors because these compounds show a distinct color change 
when oxidized by hydrogen peroxide in the presence of the 
peroxidase enzyme. It is noteworthy that peroxidase and 
other natural enzymes, show some of the following serious 
disadvantages including: 
1. They are sensitive to environmental changes such as pH 

and temperature changes and are easily denatured. 
2. They are digested by protease enzyme. 
3. Their preparation and purification are complicated and 

expensive. 
Fixing these disadvantages is possible through the development 
of some stable artificial enzymes with high catalytic ability. 
In this regard, nanotechnology has opened the doors for the 
development of new enzyme mimetic materials. In 2007, it was 
explored that Fe3O4 magnetic nanoparticles (NPs) exhibited 
significant peroxidase-like activity. This research opened the 
door for a new branch of nanochemistry called “nanozyme 
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chemistry” (Huang et al., 2019; Wu et al., 2019; Liang & Yan, 
2019; Wei & Wang, 2013; Wang et al., 2020; Zhang et al., 2021; 
Wang et al., 2016; Jiao et al., 2020; Liu & Liu, 2017; Wang et 
al., 2020; Dong et al., 2020; Hormozi Jangi, 2023; HORMOZI 
JANGI & Akhond, 2020; Dehghani et al., 2024; Hormozi 
Jangi & Gholamhosseinzadeh, 2023; Jangi & Akhond, 2021; 
Thakkar et al., 2010; Hajipour et al., 2012; Hormozi Jangi, 
2023; Hormozi Jangi, 2023; Hormozi Jangi, 2023; Jangi, 2023; 
Hormozi Jangi & Dehghani, 2023; Jangi, 2023; Hormozi 
Jangi, 2023; Ahmadi-Leilakouhi et al., 2023; Hormozi Jangi, 
2023; Jangi & Akhond, 2021; Jangi & Akhond, 2022; Jangi et 
al., 2020; Wang et al., 2018; Lu et al., 2022; Ren et al., 2022; 
Tang et al., 2021; Li et al., 2020; Yu et al., 2021; Chang et 
al., 2020; Arshad et al., 2022; Jangi et al., 2020). Nanozyme 
chemistry is -consisted of design, synthesis, modification, 
biochemical characterization, structural characterization, 
and application of nanoscale artificial enzymes as well as 
evaluation of mechanism of nanozyme-based systems (Figure 
1) (Huang et al., 2019; Wu et al., 2019; Liang & Yan, 2019; 
Wei & Wang, 2013; Wang et al., 2020; Zhang et al., 2021; 
Wang et al., 2016; Jiao et al., 2020; Liu & Liu, 2017; Wang et 
al., 2020; Dong et al., 2020). In fact, the fast development of 
nanoscience and material chemistry has increased interest in 
researching new and innovative synthesis methods to produce 
new nanomaterials with unique catalytic activity (Hormozi 
Jangi, 2023; HORMOZI JANGI & Akhond, 2020), unique 
optical properties (Dehghani et al., 2024; Jangi & Akhond, 
2021), high active area (Thakkar et al., 2010), antibacterial 

properties (Hajipour et al., 2012), and high biocompatibility 
(Hormozi Jangi, 2023). The new field of nanozyme-based 
catalysis, which has been introduced as an alternative to 
enzyme-based catalysis, is called nanozyme chemistry. On the 
other hand, nanozymes are known as nanomaterials with high 
enzyme-like activity and can be used to simulate enzymatic 
reactions in harsh environmental conditions (for example, 
higher temperature or wider pH range) (Hormozi Jangi, 2023; 
Hormozi Jangi, 2023; Jangi, 2023; Hormozi Jangi & Dehghani, 
2023; Jangi, 2023; Hormozi Jangi, 2023; Ahmadi-Leilakouhi et 
al., 2023; Hormozi Jangi, 2023). As previously reported in the 
literature (Hormozi Jangi, 2023), native enzymes, for instance, 
native peroxidases or ureases suffer from several disadvantages 
and drawbacks such as low pH stability, low thermal stability, 
low recoverability, and no reusability. Commonly, to solve 
these difficulties and drawbacks of native enzymes, the 
development of enzyme immobilization protocols has been 
widely considered in the literature (Hormozi Jangi, 2023; Jangi 
& Akhond, 2021; Jangi & Akhond, 2022; Jangi et al., 2020). 
Hence to solve these difficulties, the design and development 
of low-cost nanozymes were considered as an interesting way 
for performing enzyme-catalyzed reactions in harsh conditions 
(Hormozi Jangi, 2023; Wang et al., 2018). Nanozymes have 
been used for several applications in catalysis (Lu et al., 2022), 
biomedical imaging (Ren et al., 2022), diagnosis of infection 
diseases (e.g., COVID-19), treatment of diseases, tumor 
therapy (Tang et al., 2021; Li et al., 2020), and sensing and 
detection (Yu et al., 2021; Chang et al., 2020; Arshad et al., 
2022) (Figure 2).

Figure 1: Nanozyme chemistry consisted of several parts.

For instance, up to date, different types of nanozyme-based sensors such as single nanozymatic sensors, enzyme-nanozyme 
hybrid sensors, etc. have been developed [39]. Recently a new generation of nanozyme-based systems called “multinanozyme 
system’ was introduced by (Hormozi Jangi et al., 2020) (Jangi et al., 2020; Jangi et al., 2020). During the last years, a wide 
variety of nanozyme-based colorimetric sensors have been developed for the detection and quantification of a variety of analytes 
for instance, tryptophan (Xu et al., 2023), glutathione (GSH) (Jangi & Akhond, 2020), dopamine (Ray et al., 2020), tetracycline 
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(Shen et al., 2022), metal cations (Akhond et al., 2020), glucose (Chen et al., 2019), H2O2 (Hormozi Jangi & Dehghani, 2023), 
explosives (Hormozi Jangi et al., 2020), and cysteine (Singh et al., 2017). Besides, some of the nanozyme-based sensors with 
fluorescence-based response had been developed and utilized for detecting several analytes (Wang et al., 2022; Heo et al., 2020). 
It is notable that after the first report of COVID-19 on 2019 (Hormozi Jangi, 2023; Jangi, 2023), the nanozymes had been utilized 
for detection of SARS-CoV-2 (Liang et al., 2021).

Figure 2: Different applications of nanozymes in real world.

Historical overview of nanozymatic sensors
Up to now, several reports on nanozymes application in the field of sensing and detection were published as we mentioned above. 
In this section, the recent published works were reviewed. In 2016, (Lu et al., 2016) fabricated a new nanozyme based sensor for 
colorimetric quantification of hydrogen peroxide utilizing a new 3D porous dendrites of PtCu three-dimensional (3D) hierarchical 
porous. The peroxidase mimic properties of the dendrites were checked by the standard method of 3,3′,5,5′-tetramethyl-benzidine 
oxidation by hydrogen peroxide. The sensor provided a linear range of over 0.3–325 μM along with a LOD of 0.1 μM for 
hydrogen peroxide determination which is lower than the accepted level of hydrogen peroxide reported by US FDA (i.e., 15 μM). 
The method showed good selectivity and was applied for the determination of the hydrogen peroxide content of milk samples 
(Figure 3). 

Figure 3: A nanozyme based sensor for colorimetric quantification of hydrogen peroxide utilizing a new 3D porous dendrites of 
PtCu three-dimensional (3D) hierarchical porous (adapted from (Lu et al., 2016).
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In 2017, (Singh et al., 2017) reported a selective nanozyme-
based method for the quantification of malathion utilizing the 
peroxidase-mimicking properties of palladium-gold nanorods. 
The O- phenylenediamine was used as the chromogenic 
compound for the detection purpose upon its oxidation by 
hydrogen peroxide catalyzed by palladium-gold nanozyme. 
A LOD as low as 60 ng mL-1 was obtained for the detection 
of malathion along with a recovery percentage of 80–106%. 
The reproducibility of the sensor was found to be 2.7-6.1% 
and 3.2-5.9% intra and inter-assay, in turn. In 2017, (Zhang 
et al., 2018) immobilized modified the Cu(II)-based MOF-74 
and employed them for the sensitive electrochemical detection 
of 2,4,6-trichlorophenol. XRD, FT-IR, SEM, UV-Vis., and CV 
measurements were performed for investigation of composite 
properties. A wide linear range over 0.01-9 μM and LOD of 
about 0.005 μM was achieved for the determination of 2, 4, 
6-trichlorophenol. The repeatability studies showed an RSD% 
of 4.6% for determination of 0.5 5 μM 2, 4, 6-trichlorophenol. 
In 2018, (Chen et al., 2018) synthesized honeycomb-like zinc-
doped Ni(II)-based MOF with spherical particles using HCl 
as the modulator upon a microwave-assisted method. The 
resulting MOFs were used as electrode materials, showed a 
specific capacity of 237.4 mA h g-1 for 1 A g-1 which can be 
used as supercapacitor material. In 2018, (Yu et al., 2018) 
designed a new sensor for the Pb(II) detection using a Fe(II)-
MOFs/Pd-Pt alloys composites via a target-triggered nuclear 
acid cleavage of Pb2+-specific DNAzyme. Moreover, the 
DNAzyme was immobilized on streptavidin-modified reduced 
graphene oxide-tetraethylene pentamine-gold nanoparticles 
for use as the sensor platform. By introducing the Pb(II), the 
DNA was cleaved by the DNAzyme and a new single strand of 
DNA was produced. In the presence of Pb2+, the substrate DNA 
strand can be specifically cleaved at the ribonucleotide site by 
DNAzyme to produce a new single-DNA on the interface. Then, 
the single-strand DNA was used for modification of Fe-MOFs/
PdPt NPs for signal amplification. The sensor showed a linear 
range over 0.005-1000 nM and a LOD of 2 pM (S/N =3) for 
Pb(II) determination in drinking water. In 2018, (Li et al., 2018) 
synthesized and characterized a new iron-base MOF@palladium 
nanoparticles composite via assembly palladium nanoparticles 
on the surface of NH2-Fe-MIL-88. The composite was used 
for the determination of microRNA-122 by the electrocatalytic 
oxidation of 3,3′,5,5′-tetramethylbenzidine in the presence of 
H2O2 catalyzed by the developed nanocomposite with intrinsic 

peroxidase-like activity. A working range over 0.01 fM-10 pM 
along with a LOD of 0.003 fM (S/N =3) was obtained. In 2018, 
(Lopa et al., 2018) used a microwave-assisted solvothermal 
route for the synthesis of a novel base-stable Cr(III)-MOF and 
utilized it for the non-enzymatic quantification of hydrogen 
peroxide via its electro-reduction in 0.1 M NaOH through the 
redox process of Cr(III)/Cr(II) in the Cr (III)-MOF. A working 
range of 25-500 mM and a LOD of 3.52 mM was provided 
for hydrogen peroxide determination. In 2018, (Wang et al., 
2018) used the Ru, Ir, and Pt-based nanozymes for developing 
a nanozyme sensor array toward biothiols and proteins 
determination as well as cancer cells discrimination. The 
sensor array can accurately identify 42 of 45 proteins and 28 of 
30 biothiols which makes it applicable for biothiols detection 
in blood and protein discrimination in urine samples. In 2019, 
(Xue et al., 2019) reported a new nanocomposite of silver 
nanoparticles with amino-functionalized multi-walled carbon 
nanotubes with high water-processibility, environmental 
stability, and electrocatalytic capacity via the ultrasonic-
assisted liquid-phase exfoliation method. The nanocomposite 
was then dispersed in carboxymethyl cellulose sodium and 
applied for the development of electrochemical sensors for 
single/simultaneous determination of xanthine, uric acid, 
and hypoxanthine, showing a working range of 0.5–680 μM 
(LOD=0.021 μM), 0.1–800 μM (LOD= 0.052 μM), and 
0.7–320 μM (LOD=0.025 μM), in order. In 2020, (Zhu et al., 
2020) fabricated a nanozymatic sensor array for the detection 
of aromatic pesticides using heteroatom-doped graphene. The 
enzyme-like activity of nanozyme was inhibited in the presence 
of the different pesticides with a characteristic distinguish 
between them. This sensor array can determine the lactofen, 
bensulfuron-methyl, fluoroxypyr-meptyl, diafenthiuron, and 
fomesafen over 5-500 μM. The array was practically applied 
for the analysis of soil samples. In 2020, (Hormozi Jangi et 
al., 2020) developed a novel naked-eye method for field 
detection of notorious explosive triacetone triperoxide via 
the oxidation of 3, 3′-diaminobenzidine in the presence of 
hydrogen peroxide produced from the acidic decomposition of 
triacetone triperoxide catalyzed by MnO2 nanozymes. A linear 
range of 1.57-10.50 mg L−1, a LOD of 0.34 mg L−1, and a fast 
spot test analyzing time of 5 s were provided. Since the DAB 
oxidation was selectively proceeded by hydrogen peroxide not, 
by molecular oxygen, hence, this method can be eliminated the 
common false-positive results from laundry detergents (Figure 
4).

Figure 4: A novel naked-eye method for field detection of notorious explosive triacetone triperoxide via the oxidation of 3, 
3′-diaminobenzidine in the presence of hydrogen peroxide produced from the acidic decomposition of triacetone triperoxide 

catalyzed by MnO2 nanozymes (adapted from Hormozi Jangi et al., 2020).
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In 2020, (Lin et al., 2020) synthesized the gold alloy-based 
nanozymes which showed better catalytic performances than 
the common gold nanoparticles. The developed nanozymes 
were used for the discrimination of cysteine, glutathione, 
mercaptoacetic acid, dithiothreitol, mercaptosuccinic acid, 
and mercaptoethanol in the human serum samples. In 
2021, (Soltani et al., 2021) synthesized and characterized a 
carboxylic acid-functionalized layered double hydroxide/
MOF nanocomposite via growing the UiO-66-(Zr)-(COOH)2 
MOF on the surface of COOH-functionalized Ni50Co50- 
layered double hydroxide nanosheets at 100°C. The product 
was used for Cd(II) and Pb(II) removal from the water 
via surface adsorption mechanism, showing an adsorption 
capacity of 415.3 and 301.4 mg g−1 for Cd(II) and Pb(II), in 
turn. The method showed a Langmuir adsorption isotherm 
and a pseudo-first-order kinetic model. In 2021, (Butova et 
al., 2021) reported a scalable route for the synthesis of MOF-
801. They evaluated the effect of the concentration of mono-
carboxylic acids on the water and hydrogen uptake, porosity, 
crystallinity, size, and shape of particles. They revealed that 
heating and small grains in powders are suitable for the fast 
release of water. The properties of the MOF-801 can enhance 
by both formic and acetic acid. The resulted MOF-801 showed 
1.1 wt% hydrogen uptake at 750 mmHg and 20% water uptake 
at ambient temperature. In 2021, (He et al., 2021) prepared 
stable MOF based on porphyrinic for the encapsulation of 
metal nanoparticles via stirring at ambient temperature. In this 
regard, Pt NPs encapsulated into the MOF can be produced by 
stirring the Pt NPs solution in the presence of the MOFs. In 

2021, (Kang et al., 2021) reported a nanozyme based sensor for 
the determination of dopamine using hemin-doped-HKUST-1. 
The hemin-doped-HKUST-1 was prepared using a one-pot 
hydrothermal method and combined with reduced graphene 
oxide modified on a glassy carbon electrode. The composite 
exhibited high electrocatalytic activity toward electro-
oxidation of dopamine. Using this sensor, a linear range of 
0.03–10 μM and a LOD of 3.27 × 10−8 M (S/N = 3) was obtained 
for the quantification of dopamine. In 2021, (Hermosilla et al., 
2021) proposed a new colorimetric method for assaying the 
oxidase-mimicking properties of MnFe2O4 NPs (size, 3.19 
nm). The protocol was based on the oxidation of 3-methyl-
2-benzothiazolinone-hydrazone to 3-(dimethylamino) benzoic 
acid. The pH and temperature effect on the assay response 
was evaluated, revealing an optimum pH of 3.9 at 30 °C. The 
Michaelis Menten model supported the kinetic behavior of the 
nanozyme catalyzed reaction, obtaining a Km of 13.59 µM 
and a kcat of 5.25 × 107 s−1 along with a kcat/Km ratio of 3.86 
× 1012 M−1 s−1. In 2022, (Wu et al., 2022) developed a MnO2 
nanozyme-mediated CRISPR-Cas12a system for naked-eye 
diagnosis of COVID-19. In this system, the MnO2 nanorods 
were initially linked to magnetic beads using a single-stranded 
DNA (ssDNA). The as-prepared nanozymes show high 
oxidase-like activity and can catalyze the oxidation of TMB 
to a blue-colored product. However, the detection color will 
change by activation of Cas12a by SARS-CoV-2 and cleaving 
the ssDNA which was used as a basis for the detection of 
SARS-3CoV-2 (Figure 5).

Figure 5: A MnO2 nanozyme-mediated CRISPR-Cas12a system for naked-eye diagnosis of COVID-19 (adopted from (Wu et 
al., 2022).

In 2023, (He et al., 2023) performed a nanozyme-based colorimetric method for naked-eye diagnosis of COVID-19 by iron 
manganese silicate nanozymes as peroxidase-like nanozymes. The nanozymes activity can be inhibited by introducing the 
pyrophosphate ions which are generated by amplification processes and can be used for optical diagnosis of COVID-19. Besides, 
(Chu et al., 2023) developed a robust colorimetric immunosensing method using liposome-encapsulated MnO2 nanozymes for 
diagnosis of COVID-19 via detection of SARS-CoV-2 antigen using TMB as the chromogenic substrate. Moreover, (Vafabakhsh 
et al., 2023) reported a paper-based colorimetric nanozyme-based sensor for diagnosis of COVID-19 using aptamer-modified 
ChF/ZnO/CNT nanohybrids as peroxidase mimics and TMB as the chromogenic substrate.
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Perspectives
The nanozyme chemistry is new filed and on its initial steps 
(Hormozi Jangi, 2023; Hormozi Jangi, 2023; Jangi, 2023; 
Hormozi Jangi et al., 2023; Hormozi Jangi et al., 2023; 
Hormozi Jangi et al., 2023). As a perspective to future of this 
filed, it can be pointed to the following items; 
• Developing nanozymes with higher catalytic efficiency 

and higher substrate affinity in their native form.
• Developing nanozymes with intrinsic activity of 

commercial enzymes such as lipase and urease for 
application in industrial process in real world.

• Extending the multinanozyme systems for improving 
sensitivity and selectivity of nanozymatic sensors

• Design of biocompatible nanozymes with drug-like 
properties for treatment of diseases with minimal side 
effects.

• Developing simple surface modification of nanozymes for 
enhancing their specificity.

• Evaluating biochemical behavior of nanozymes for better 
understanding their best performances

• Developing reusable nanozymes with high cycling 
stability and simple recovery suitable for real practical 
applications

• Design of specific nanozyme-based sensors compared of 
current selective sensors

• etc.

Conclusions
The fast development of nanoscience and material chemistry 
has increased interest in researching new and innovative 
synthesis methods to produce new nanomaterials. Among 
different nanomaterials, a wide variety of these materials 
reveal high intrinsic enzyme-like activity. Due to their high 
catalytic efficiency and stability, the new field of nanozyme-
based catalysis, which has been introduced as an alternative 
to enzyme-based catalysis, is called nanozyme chemistry. 
On the other hand, nanozymes are known as nanomaterials 
with high enzyme-like activity and can be used to simulate 
enzymatic reactions in harsh environmental conditions. This 
article aimed to present a brief introduction on the nanozyme-
based chemistry with emphasizing on the historical overview 
of recent nanozymatic sensors.
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