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Abstract
A generalized approach was developed for solving plane and spatial contact problems in a dynamic elastic-plastic 
formulation. The spatial problem of a strain stress state of a beam made from the composite reinforced two-layer 
material is being solved. The reinforced or armed composite material consists of two materials: the main material 
of glass and the reinforcing thin steel layer. Glass is a non-crystalline, often transparent amorphous solid, that has 
widespread practical and technological use in the modern industry. Glass has high strength and is not affected 
by the processes of aging of the material, corrosion, and creep. In addition, this material is cheap and widely 
available. The reinforced composite beam is rigidly linked to an absolutely solid base and on which an absolutely 
solid impactor acts from above in the centre on a small size of the area of initial contact. 

Introduction
The use of a generalized approach to solve dynamic contact 
problems in an elastic-plastic formulation makes it possible 
to use it to solve contact problems for a body of arbitrary 
shape, which is subjected to an arbitrary distributed over the 
contact zone or shock loading. For the design of composite and 
reinforced materials, a technique for solving dynamic contact 
problems in more adequate an elastic-plastic mathematical 
formulation is used. To consider the physical nonlinearity 
of the deformation process, the method of successive 
approximations is used, which makes it possible to reduce 
the nonlinear problem to a solution of the sequences of linear 
problems. Linear problems are solving using method of finite 
differences. Due to the developed approach, it is possible to 
use method of finite elements, analytical methods when plastic 
deformations from previous iterations consider in further steps. 
It is possible to use different criterions of plastic fluidity. For 
describing dynamic motion of solid environment, it is possible 
to use equations of the theory of dynamic of nano materials. 
In this case we would be able to simulate nano-effects and 
solve problems of nanotechnology. Using this approach, it is 
possible to solve impact problems, for that it is necessary to 
add Cauchy problem of moving impactor as solid body. All 
that is matter of further research.

Since glass is a cheap, ubiquitous material that is not susceptible 
to corrosion and aging and creep processes, like metals and 
alloys, the study of composite materials containing glass is 
relevant and actual.
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In (Bogdanov, 2023; Bogdanov, 2022; Bogdanov, 2022; 
Bogdanov, 2023; Bogdanov, 2023), a new approach to solving 
the problems of impact and nonstationary interaction in the 
elastoplastic mathematical formulation was developed. In 
these papers like in non-stationary problems (Bogdanov, 
2023; Bogdanov, 2022; Bogdanov, 2022; Bogdanov, 2023; 
Bogdanov, 2023), the action of the striker is replaced by a 
distributed load in the contact area, which changes according 
to a linear law. The contact area remains constant. 

In (Bogdanov, 2022; Bogdanov, 2022; Bogdanov, 2023; 
Bogdanov, 2023) dynamic interaction process of plane hard 
body and two layers reinforced composite material was 
investigated and the fields of summary plastic deformations 
and normal stresses arising in the base are calculated using 
plane strain (Bogdanov, 2022; Bogdanov, 2022; Bogdanov, 
2023; Bogdanov, 2023) and plane stress (Bogdanov, 2022; 
Bogdanov, 2023) states models. In (Bogdanov, 2022) results 
depend on the size of the area of an initial contact between 
the impactor and the upper surface of the base and depend on 
the thickness of the top metal layer of the composite base. In 
(Bogdanov, 2022) results were calculated depending on the 
material of top layer of the composite base. Composite bases 
reinforced by steel, titanium and aluminium top layers were 
investigated. In (Bogdanov, 2023) the problem of plane strain 
state of four-layer composite reinforced base was solved.
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In contrast from the work (Bogdanov, 2022; Bogdanov, 2022; 
Bogdanov, 2023; Bogdanov, 2023; Bogdanov, 2018), in these 
papers, we investigate the impact process of hard body with 
base using spatial model.

Problem Formulation
Deformations and their increments (Bogdanov, 2023), Odquist 
parameter p

idκ ε= ∫ ( p
iε  is plastic deformations intensity), 

stresses are obtained from the numerical solution of the 
dynamic elastic-plastic interaction problem of composite 
beam { / 2 / 2;0 ; }L x L y B H z H− ≤ ≤ ≤ ≤ − ≤ ≤ , in the plane of 
its cross section in the form of rectangle. Due to symmetry of 
the deformation process relative to the planes x = 0 and 	
z = 0, below we will consider a parallelepiped L B HΣ = × ×
(Fig.1) with two materials: main material is quarts glass
{0 / 2;0 ;0 }x L y B h z H≤ ≤ ≤ ≤ − ≤ ≤  and steel {0 / 2;x L≤ ≤

;0 }B h y B z H− ≤ ≤ ≤ ≤  to solve the spatial problem. The 
contact between two layers is ideally rigid. The base contacts 
absolute hard half-space {y ≤ 0}. We assume that the contact 
between the lower surface of the base and the absolute hard 
half-space is ideally rigid.

From above on a body the rigid drummer contacting along a 
segment{0 ; ;0 }x A y B z H≤ ≤ = ≤ ≤ . Its action is replaced 
by an even distributed stress -P  in the contact region, which 
changes over time as a linear function 01 02P p p t= + . The 
calculations use known methods for studying the quasi-
static elastic-plastic (Bogdanov, 2023; Mahnenko, 1976; 
Mahnenko, 2003; Mahnenko et al., 2009) model, considering 
the non-stationarity of the load and using numerical integration 
implemented in the calculation of the dynamic elastic model 
(Bogdanov, 2023; Bogdanov, 2022; Bogdanov, 2022; 
Bogdanov, 2023; Bogdanov, 2023).

Figure 1: Geometric scheme of the problem

The equations of the spatial dynamic theory are considered, for 
which the components of the displacement vector ( , , )x y zu u uu =    
are related to the components of the strain tensor by Cauchy 
relations:
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The equations of motion of the medium have the form:
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where p − material density.

The boundary and initial conditions of the problem have the 
form:
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The determinant relations of the mechanical model are based 
on the theory of non-isothermal plastic flow of the medium 
with hardening under the condition of Huber-Mises fluidity. 
The effects of creep and thermal expansion are neglected. 
Then, considering the components of the strain tensor by the 
sum of its elastic and plastic components (Bogdanov, 2023; 
Mahnenko, 1976), we obtain expression for them:

  				    (4)

here ij ij ijs σ δ σ= −  – stress tensor deviator; ijδ  – Kronecker 
symbol; Е – modulus of elasticity (Young’s modulus); G 
– shear modulus; 1 (1 2 ) / (3 )K Eν= − , 13K K=  – volumetric 
compression modulus, which binds in the ratio Kε σ φ= +  
volumetric expansion 3Ɛ (thermal expansion ϕ = 0); 

( ) 3xx yy zzσ σ σ σ= + +  − mean stress; dλ – some scalar 
function (Mahnenko, 1976), which is determined by the shape 
of the load surface and we assume that this scalar function is 
quadratic function of the stress deviator ijs  (Mahnenko, 1976; 
Mahnenko, 2003; Mahnenko et al., 2009).
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It should be noted that the developed algorithm makes it 
possible to use the function f in (5) not only in the form of a 
quadratic function (in this case, we obtain the plastic fluidity 
condition in the Huber-Mises form), however also in the form 
of a function containing terms of degree higher then second 
degree. This statement requires further research.

The material is strengthened with a hardening factor η*   
((Bogdanov, 2023; Bogdanov, 2022; Bogdanov, 2022; 
Bogdanov, 2023; Bogdanov, 2023; Mahnenko, 1976):
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where T – temperature; κ  – Odquist parameter, T0 = 20oC, η*– 
hardening coefficient; – yield strength after hardening of 
the material at temperature T.
Rewrite (4) in expanded form:
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Solution Algorithm
Let the nonstationary interaction (Bogdanov, 2023) occur in a 
time interval *[0, ]t t∈ . Then for every moment of time t:
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For numerical integration over time, Gregory’s quadrature 
formula [1, 11] of order m1 = 3 with coefficients Dn was used. 
For more precise calculations it is necessary to use formulas 
of higher order. After discretisation in time with nodes 

*[0, ] ( 0, )kt k t t k K= ∆ ∈ = for each value k we write down 
the corresponding node values of deformation increments:
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The solution of the system (10), gives expressions for the 
components of the stress tensor at each step [1]:
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Function 1 (2 )Gψ λ= + ∆ , which is characterizing the yield 
condition, taking into account (8), (9) and (11) is:
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To take into account (Bogdanov, 2023) the physical 
nonlinearity contained in conditions (12), the method of 
successive approximations is used, which makes it possible to 
reduce a nonlinear problem to a sequence of linear problems 
(Bogdanov, 2023; Mahnenko, 1976; Mahnenko, 2003; 
Mahnenko et al., 2009):
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where Q – the value of the largest deviation of the stress 
intensity ( )n

iσ in step n from the strengthened yield strength; 
n – is the approximation number.
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The stresses and strains used above were determined for each 
unit cell from the numerical solution at each point in time 	
tk = kΔt.

Numerical Solution
For problem the explicit scheme of the finite difference method 
was used with a variable partitioning step along the axes Ox 
(M elements), Oy (N elements) and Oz (N1 elements). The step 
between the split points was the smallest in the area of the layers 
contact and at the boundaries of the computational domain. 
Since the interaction process is fleeting, this did not affect the 
accuracy in the first thin layer, areas near the boundaries, and 
the adequacy of the contact interaction modelling.

The use of finite differences (Zukina, 2004; Hemming, 1972) 
with variable partition step for wave equations is justified in 
(Zukina, 2004), and the accuracy of calculations with an error 
of no more than ( )2 2 2 2( ) ( ) ( ) ( )O x y z t∆ ∆ ∆ ∆+ + +  where Δx, Δy, 
Δz and Δt  – increments of variables: spatial x, y and z and time 
t. A low rate of change in the size of the steps of the partition 
mesh was ensured. The time step was constant.

The resolving system of linear algebraic equations with a 
banded symmetric matrix was solved by the Gauss method 
according to the Cholesky scheme.

In (Weisbrod & Rittel, 2000), during experiments, compact 
samples were destroyed in 21 – 23 ms. The process of 
destruction of compact specimens from a material of size 
and with contact loading as in (Weisbrod & Rittel, 2000) was 
modelled in a dynamic elastoplastic formulation as plane strain 
state, considering the unloading of the material and the growth 
of a crack according to the local criterion of brittle fracture. The 
samples were destroyed in 23 ms. This confirms the correctness 
and adequacy of the developed formulation and model.

Figs. 2 – 25 show the results of calculations of two-layer 
specimens which have a paralellepiped shape with a hardening 
factor of the material η* = 0, 05. The main layer has made 
from quartz glass. The material of the reinforcing top thin 
layer is steel. Contact between glass and steel is an ideal rigid. 
Calculations were made at the following parameter values: 
temperature T = 50oC; L = 60 mm; B = 10 mm ; H = 25 mm 
; h= 0.5 mm ; Δt = 3.21-10-8 s; p01 = 8 Mpa ; p02 = 10 Mpa ; 
M = 22; N = 23; N1 = 11. The smallest splitting step was 0,01 
mm, and the largest 9 mm min( 0,02 ;x mm∆ = min 0,02 y mm∆ =  

min 0,01 z mm∆ = (only the first layer); max 7,1 x mm∆ = ; 

max 0,94 y mm∆ = ; max 9 z mm∆ = ); contact zone was 
equal 12 3 a A a mm= = = .
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Figs. 2 – 13 and, 14 – 25 show the fields of the Odquist parameter 
κ  and, normal stresses xxσ  at the times 6

1 0.64 10  t s−⋅= , 
6

2 1.92 10  t s−⋅=  and 6
3 2.89 10  t s−⋅=  in planes x1= 49.98 mm, 	

x2= 49.88 mm, x3= 43.3 mm, x4= 27.3 mm, respectively.

As can be seen from Fig. 2–25, the greatest plastic deformations 
and stresses occur directly under the end of contact zone 
between the striker and base and in the area near the boundary 
of materials contact, which work as a concentrator of stresses 
and deformations. The largest values of the Odquist parameter 
and stresses occur in plane x3= 43.3 mm. In the area of top 
steel layer which is under the stamp and above the boundary 
of contact two layer the large tensile stresses occur. This is 
due to the fact that the contacts between the layers and the 
lower boundary of the specimen with an absolutely rigid base 
are ideally rigid and process of stress propagation has a wave 
pattern. When a layer of glass is reinforced with a top layer of 
steel, stresses and deformations have a structure more similar 
to waves in the top layer.

Conclusions
The developed methodology of solving dynamic spatial 
contact problems in an elastic-plastic dynamic mathematical 
formulation makes it possible to model the processes of 
impact, shock and non-stationary contact interaction with the 
elastic composite base adequately. In this work, the process of 
impact on a two-layer base reinforced by thin top steel layer 
is adequately modelled and investigated relative to the small 
enough contact area size. The fields of parameter Odquist 
and normal stresses arising in the base are calculated. The 

numerical results confirm the need to strengthen the glass 
layer with a thin layer of steel/metal on the upper surface of 
the base (Bogdanov, 2022; Bogdanov, 2022; Bogdanov, 2023; 
Bogdanov, 2023). The boundary of contact between layers 
redistributes the stresses and plastic deformations that occur in 
such composite base. Normal stresses are concentrated in the 
area of top steel layer. The results obtained make it possible to 
design the narrow strips of new composite reinforced armed 
materials.
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