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Abstract
An auxiliary plane problem on the action of a stamp in the tangential direction is solved. The kernel of the integral 
relationship between the harmonics of tangential stresses and the harmonics of the tangential component of the 
velocity vector is obtained. Based on this, a resolving infinite system of Volterra integral equations of the second 
kind with respect to the unknown harmonics of the tangential component of the velocity vector is derived. The 
obtained solutions make it possible to solve impact problems when the striker moves at an arbitrary angle and 
more accurately calibrate the computational process for solving contact problems in a dynamic elastic-plastic 
formulation.

Introduction
This paper provides a solution to an auxiliary problem, as a 
result of which the kernel of the integral expression for the 
component of the normal component of the velocity vector 
through the normal stress component on the surface of the elastic 
half-space is obtained. This makes it possible to formulate a 
resolving infinite system of integral Volterra equations of the 
second kind with respect to unknown harmonics of tangential 
stresses. This article is an addition to (Bogdanov, 2023; 
Popov, 1989; Kubenko et al., 1995; Kubenko & Popov, 1988; 
Bogdanov, 2023; Golovchan, et al; 1986).

The use of a generalized approach to solving dynamic contact 
problems in an elastic-plastic formulation makes it possible to 
use it to solve contact problems for a body of arbitrary shape, 
which is subjected to an arbitrary distributed over the contact 
zone or shock loading.

In Bogdanov (2023); Bogdanov (2022); Bogdanov (2022); 
Bogdanov (2023); Bogdanov (2023), a new approach to 
solving the problems of impact and nonstationary interaction 
in the elastoplastic mathematical formulation was developed. 
In Bogdanov (2023); Bogdanov (2022); Bogdanov (2022); 
Bogdanov (2023); Bogdanov (2023) dynamic interaction 
process of plane hard body and two layers reinforced compo-
site material was investigated and the fields of summary 
plastic deformations and normal stresses arising in the base 
are calculated using plane strain Bogdanov (2023); Bogdanov 
(2022); Bogdanov (2022); Bogdanov (2023); Bogdanov 
(2023) and plane stress Bogdanov (2023); Bogdanov (2022); 
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Bogdanov (2023) states models. In Bogdanov (2022), results 
depend on the size of the area of an initial contact between 
the impactor and the upper surface of the base and depend on 
the thickness of the top metal layer of the composite base. In 
Bogdanov (2022), results were calculated depending on the 
material of top layer of the composite base. Composite bases 
reinforced by steel, titanium and aluminium top layers were 
investigated. In Bogdanov (2023), the problem of plane strain 
state of four-layer composite reinforced base was solved.

In contrast from the work (Popov, 1989; Kubenko et al., 1995; 
Kubenko & Popov, 1988; Bogdanov, 2023; Bogdanov, (2023)), 
in these papers, we investigate the tangential impact process. 

Problem Formulation
It was solved problem when absolute hard cylinder moving 
to the surface of an elastic half-space 0z ≥  collides with an 
elastic half-space at a time 0t =  (Fig. 1). The initial contact 
was along cylinder generatrix. The cylinder begins to penetrate 
into the elastic medium at a rate 1 ( )Tv t , and the initial rate 
of penetration 10 1 (0)TV v= . It was associated with the shell, 
a moving cylindrical coordinate system: r yθ ′ :θ   is –the polar 
angle, which is postponed from the positive direction of the 
axis Oz,. The axis O y′ ′ coincides with the axis of the cylinder. 
A fixed Cartesian coordinate system xyz was connected with 
a half-space, so that the Oz axis is directed inwards, the Ox 
axis – is on the surface of the half-space and the Oy axis – is 
parallel to the cylinder generatrix. It was assumed that there are 
no tangential movements during the penetration process.
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Figure 1: Calculation scheme

In the problem under consideration, an idealized tangential 
movement of the striker is assumed, which is symmetrical 
relative to the plane x = 0, which causes a stress-strain state 
symmetrical relative to this plane. The purpose of this work 
is to derive the kernel of the integral relationship between 
the harmonics of the tangential stress and the harmonics of 
the tangential component of the velocity vector and test it by 
calculating the solution to this problem.

The physical properties of the half-space material are 
characterized by elastic constants: the modulus of volume 
expansion K, the shear modulus µ and the density ρ. The 
elastic medium with constants K, µ, and ρ will correspond to 
the hypothetical acoustic medium with the same constants K, 

µ, and ρ; thus 0µ = . By pC , SC  and 0C   we mean the speed of 
longitudinal and transverse waves in an elastic half-space, as 
well as the speed of sound in a hypothetical acoustic medium 
corresponding to the considered half-space.

Let into the notation:
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We introduce dimensionless variables:
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where ( , )x zu u=u  is the displacement vector of points of the 
environment, σzz, σxz– are the non-zero components of the stress 
tensor of the medium, M - is the linear weight of the striker 

and ( )Tv t , ( )Tw t  are the velocity and displacement of the 
striker as a solid. In the future we will use only dimensionless 
quantities, so we omit the dash.

The motion of an elastic medium is described by scalar 
potentials of equations φ and the non -zero component of 
vector potential ψ satisfying the wave equations:
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Physical quantities are expressed in terms of wave potentials 
as follows:
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In the coordinate system zOx movement ,  z xu u  and stresses   

zzσ  and zxσ  at the surface points of the contact area will be 
written in the form:

  
*( , ,0) ( ),     ,x Tu t x w t x x= − ≤

		     (5)

  
*( , ,0) 0,      ,zx t x x xσ = >

			      (6)

  ( , ,0) 0,      .zz t x xσ = < ∞ 			      (7)

 ( )Tw t  is the movement of the cylinder as a solid according 
to low:
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The initial conditions for the potentials φ and ψ are zero:

  0 0
0 0

0,   0.t t
t tt t
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∂ ∂= =

= =
= = = = 		   (11)

We assume that the contact region is simply connected, and this 
statement is equivalent to the fact that normal to the contact 
area stresses are compressive.
  0 0,   ( ).zz z x x tσ ∗

= < < 			     (12)

Mathematically, we have a non-stationary mixed boundary 
problem of the theory of elasticity, when displacements are 
given in the contact region and the rest of the half-space 
boundary is free of stresses.
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Since the impact process is short-lived, the perturbation region 
at each time t is finite. Limiting the finite time interval of the 
interaction ( )0 t T≤ ≤ , we can select a half-space region that 
by the time T covers the entire perturbation zone. From this 
point of view, for the times 0 t T≤ ≤  elastic half-space can be 
replaced by elastic half-strip ( );   0x l z≤ ≥ ; perturbations do 
not reach the limits of time T.
   ( ).l T x Tα ∗= + 				    (13)

Thus, for the time being 0 t T≤ ≤ , and the problem under 
consideration is reduced to a non-stationary problem for a half-
strip under mixed boundary conditions at its end. To represent 
the displacement vector in the form:
  grad rot ,   div 0,u ϕ ψ ψ= + = 		  (14)
on the side surface of the semi-strip, we choose the conditions 
of sliding:
  0,   0,x zxx l x lu σ= == = 			   (15)

We apply to the system of equations (3) the Laplace transform 
on the variable t (s is the transformation parameter) and the 
Fourier method of separation of variables, taking into account 
the even of x potential φ and odd potential φ. Then, in the space 
of the Laplace transform we obtain the following expressions 
for wave potentials [6]:
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where nλ  are the eigenvalues of the problem, in this case

  / ,n n lλ π= 					     (17)
In (16), ( )nA s  and ( )nB s  are determined from the conditions 
at the boundary. From expressions (16) and relations (4), it 
follows that the required functions on the surface of the half-
space are represented in the form of series according to the 
system of eigen functions of the problem.
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Auxiliary Problem
Based on (5), the boundary conditions in the absence of friction 
in the contact zone can be formulated as follows:
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Applying to the last equations of the Laplace transform on t and 
considering (18), we obtain the conditions for the transform at 
harmonics of the development of the corresponding functions 
on the surface of the half-space into trigonometric series:
  ( ) ( ),   ( ) 0,   ( 0, ).L L L

xn n zznsu s V s s nσ= = = ∞ 		    (20)

From (16), (20), using (4), we obtain:
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We consider (16), (21) in (4) and obtain such a connection 
between the transformants of the harmonics of the functions 

zxσ  and xV  ( 0, )n = ∞ :
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Applying to (22) the inverse Laplace transform and using the 
convolution theorem, we find the relationship between the 
harmonics of the tangential component of the velocity vector 
and tangential stresses on the surface of the half-space:
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where 0 1( ),  ( )J t J t are the Bessel functions of the first kind of 
zero and first shape, respectively. 

Further, mixed boundary conditions (5) – (7) satisfice. From 
(5), (23), using Н(x), which is – a Heaviside step function, we 
obtain the following expression for the vertical component of 
the velocity on the surface of the half-space:



J mate poly sci, 2024 www.unisciencepub.com Volume 4 | Issue 3 | 4 of 4

  

0

0

0 0

( )sin H( ) ( ),

1 ( )sin

H( ) sin ( ) ( ) .

xn n T
n

xn n
nn

t

n xn n
n

V t x x x v t

V t x

x x x V F t d

λ

λ
λ

λ τ τ τ

∞
∗

=
∞

=

∞
∗

=

= − −

=

− − −

∑

∑

∑ ∫

           (24)

Representing both parts (24) in the form of series on sin nxλ , 
we obtain an infinite system of integral equations of Volterra of 
the second kind relatively unknown tangent velocity harmonics 
on the surface of the half-space ( 0, )n = ∞ :
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The kinematic condition that determines the half-size of the 
contact area *( )x t  will be written as follows:
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Numerical solution will use the same methodology of solving 
the infinite system of integral equations of Volterra of the 
second kind (25) considering (26) and (8) – (10) as in [2 – 5, 
11].

Conclusions
It was developed the kernel of the auxiliary problem of 
tangential impact. Using this it was obtained the infinite 
system of integral equations of Volterra of the second kind. 
Such problems are important for solving impact problems with 
not zero tangential component of velocity vector of striker’s 
movement. Using developed formulation, it is possible to 
simulate more adequately impact, shock processes.
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