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Abstract
This paper starts from two premises, namely at first, Erwin Schrödinger’s Cat metaphor, as an access to the theory 
of quantum physics and, secondly, Jacob D. Bekenstein’s theory of the entropy of a black hole. Following Erik 
Verlinde’s interpretation of the relationship between entropy and Bekenstein’s black hole surface area notion, we 
further analyze a possible relationship between the entropy or negentropy notion and the biodiversity function of 
a fractal border zone between ecosystems. Ecosystem borders or interfaces have been discovered as important 
drivers of biodiversity resilience as well as of biodiversity impairment. The potential use of several mathematical 
techniques, in particular the time-integrated convolution using Laplace transformation of the biodiversity function, 
as well as combinatorics and probabilistic network theory are discussed. For, after all, biodiversity estimation is 
nothing similar to counting animals in a zoo, nor bees in a jar. 

Introduction
The strange correlation between entropy, quantum physics 
and live and dead of an animal (notably a mammal pet) has 
a serious historical origin, well known as Schrödinger’s Cat 
metaphor (1). Erwin Schrödinger (1887-1961) suggested his 
famous thought experiment in 1935, as a reaction to the so-
called Copenhagen interpretation of quantum physics. Invisible 
from outside, being enclosed inside a sealed box (or house) 
with a Geiger counter (measuring the decay of a radioactive 
substance) and a bit of poison (hydrocyanic acid released 
from a shattered flask by a hammer, activated by the Geiger 
counter), quantum mechanics says that after a while, the cat is 
both alive and dead (1), (2). When someone opens the box or 
looks into the house, the cat will be either found alive or dead; 
however, before that moment, the cat’s situation is assumed 
to be indeterminate. Schrödinger expressed this correlation as 
follows: the “indeterminacy originally restricted to the atomic 
domain became transformed into a macroscopic indeterminacy 
(which can be resolved by direct observation}” (2). 

The indeterminacy correlation between the microscopic 
(atomic state) and the macroscopic scales, as described in 
Schrödinger’s Cat (thought) experiment is also reflected in the 
conjecture of Jacob D. Bekenstein (1947-2015), stating that 
black holes should have an entropy and that the entropy of a 
black hole is proportional to its area (3). To Bekenstein we 
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owe the notion of the relation between area and the amount 
of information stored (following the concept of a holographic 
area, according to E. Verlinde) (4), although, according to 
Bekenstein, due attention should be given to the caveat that a 
black hole’s mass cannot be below the Planck mass (≈ 2,176 
10-8 kg), referring to the work of Max Planck (1858-1947). 
Because if it were, “the black hole would then be smaller than 
its own Compton length, and would therefore not exhibit the 
black hole hallmark, the event horizon” (5). On the important 
role of the length in this analysis, as Bekenstein’s referring 
to the work of A.H. Compton (1892-1962), we elaborate in a 
paragraph below. However, in order to compare the notion of 
entropy with the macroscopic state of a system of biological 
organisms and ecosystems, we will have to explore the origins 
of Ludwig E. Boltzmann’s (1844-1906) thoughts on entropy as 
a measure of the probabilities of successive states of a system  
(see  Entropy: definitions and relation between area and 
amount of information). 

In the present paper, in analogy with Bekenstein’s argument 
(3), (5) on the indeterminacy of macroscopic states, biological 
estimates such as the biodiversity indices (6) are linked with 
the notions of entropy change and information (loss). Also 
here, the concept of interface area is pivotal, making use of 
the fractal nature of biodiversity systems that depend on the 
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interface between areas for breeding, foraging and resting 
behavior of living animals (7). 

Because the estimation of biodiversity is especially important 
in relation to situations where the planet’s biodiversity is 
challenged, such as due to the effects of anthropogenic 
interference, climate change effects or situations where a 
spontaneous natural biodiversity resilience occurs are at stake. 
In the fractal approach of biodiversity estimation, however, a 
particular problem results from the discontinuous character of 
the fractal mathematics, being represented by geometrically 
non-differentiable functions (7). A special paragraph therefore 
is devoted to the use of Laplace transforms in convolution of 
discontinuous functions  (see Time-integrated convolution of 
fractal functions using Laplace transformation). However, 
the indeterminacy of complex ecosystems remains a challenge 
to deterministic modeling. Or, in other words, old ‘demons’ 
re-appear when a conceptual link between entropy and 
macroscopic systems is envisaged.

The question of the entropy of biodiversity changes is related 
to important practical questions like the notion of a critical 
dimensionality, or the percolation probability, which also may 
be an important characteristic for an ecosystem’s resilience or 
robustness (6) (see Implications for biodiversity resilience 
and ecosystem robustness). Finally, also alternative 
approaches, taking benefit of important developments in 
combinatorial mathematics and probabilistic methods, 
are critically examined (see Possible Applications of 
Combinatorial Mathematics in Ecology).

Entropy: definitions and relation between area and amount 
of information 
According to Schrödinger (1967), the original formula of 
entropy results from Boltzmann’s works on Gas theory (8) and 
on Entropy and Probability Theory (9). Boltzmann’s equation 
of entropy is known as:

     
D, thus being a direct measure of order (1). The negative sign 
of entropy is also found in the formulation of ‘negentropy’ by 
Léon Brillouin (1889-1969) (10):
 
 H= - Σ p(i) log pi  

Another way of expressing the same relationship, which indeed 
is the expression literally carved out in stone on Boltzmann’s 
tombstone, namely:

 S = k log W

With S for entropy, k the so-called Botzmann’s constant and 
W (from the German ‘Wahrscheinlichkeit’) for the probability, 
which is also interpreted as the degree of dis-order of the 
system. For Boltzmann it was evident that the Second Law 
of Thermodynamics, stating that transformations in a closed 
system always resulted in an increase in entropy, was just 
another way of stating that the transformations in a closed 

system would always tend to a state that is more probable 
than the previous state (11). Presumably, it was added in his 
seminal works, without knowing the exact, original state 
of the system, but nevertheless, giving an outcome for the 
comparison of successive states. We will resume this matter 
of increased probability of successive states later on, when 
referring to the extrapolation of that notion of probability 
of biodiversity impairment, resilience or anthropogenic 
influences. Boltzmann’s original theory was developed for 
atomic particles, giving rise to his kinetic gas theory too 
(8), but his theory could also become applied to polyatomic 
molecules (11).

Bekenstein’s analysis, on the other hand, originated from 
the difficult questions that were raised, following the 
acknowledgment of the disappearance of information, when an 
object as big as a star or even a galaxy disappears into a black 
hole (12). Bekenstein formulated the relation between area and 
amount of information. He established that a minimal change 
of entropy (Δ S), for a particle entering a black hole, could be 
defined as follows (3):

     
After integration of f(α) for the rationalized surface of the 
black hole with entropy Sbh , Bekenstein obtained (3): 

 Sbh = (1/2 ln 2/4 π) kB c-3 2π h-1 G-1 A

with kB for Boltzmann’s constant (~1, 38.. 10-23 JK-1), h the 
Planck constant (≈ 6,626.. 10-34 Js)(related to Planck’s length)
(see below), c the speed of light (≈ 2,9979.. 108 ms-1), G the 
gravitation constant and A the surface of the black hole (3). 
Also in E. Verlinde’s work on the entropic nature of gravity 
(13), following the argumentation of Bekenstein, it is argued 
that the change of entropy (ΔS) was linear in terms of the 
displacement (Δx) (towards a holographic screen, in analogy 
to Bekenstein’s horizon of a black hole). The argument of 
linearity is directly derived from the definition of the Compton 
wavelength for a particle with (rest) mass m:

  λ=h/mc

The Compton wavelength of an electron (with ‘rest’ mass ≈ 
9,109.. 10-31 kg) thus approaches 2,4263.. 10- 12 m. For a ‘heavy’ 
object like an animal (or, the metaphor alike, for Schrödinger’s 
cat) this m is approximately 1030 times higher. This implicates 
that λ becomes 1030 times smaller, approximating 10-42 m, 
which is far below the smallest possible length, called the 
Planck length (lP) (≈ 1,616.. 10-35 m), or, the application of the 
above entropy argument to macroscopic objects is physically 
meaningless.

However, Bekenstein already argued that, for instance in 
applying entropy to astronomic black holes, the notion of 
entropy is directly related to the event horizon property 
(resulting from the gravitation of a gigantic mass) of the black 
hole (see. Introduction). According to Verlinde(4), Bekenstein 
discovered that there is a relation between area (of an event 
horizon) and the amount of information stored. Verlinde 
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explains: “Then you should ask yourself: What is information? 
According to Boltzmann, entropy is defined as the logarithm of 
the number of states. In his epoch, this was an interesting point 
of view, but I would rather reverse the way of thinking. I would 
rather think of an area as something which is defined through 
the holographic principle” (Allaerts & Vellekoop, 2012). For 
Verlinde, area is something dividing one part of space from 
another, which is also a way of looking at information: “in 
quantum mechanics, it is called entanglement!” (4).

Alternatively, instead of trying to assign a quantum mechanical 
correlate for the probabilistic contribution of an animal to 
the entropy of a system (such as in Schrödinger’s metaphor) 
(see Introduction), one may link the animal to its presence 
or absence in a certain territory, or to the biodiversity of that 
ecosystem, when summed over all the life forms present (or 
absent) in that area. Also here, size does matter, because an 
animal’s territory in some way is (directly) related to its size 
or mass, or, (indirectly) through the number of offspring or 
reproductive behavior (7) (see below).

Time-integrated convolution of fractal functions using 
Laplace transformation
As it has been known for long time, the use of P.S. Laplace’s 
(1749-1827) transformation in mathematical analysis may 
have some distinct advantages (14), such as that it can be 
applied to functions that are (only) piecewise continuous, as 
well as to all operational rules like addition, multiplication, 
differentiation and integration (14). The Laplace Transform of 
a given function F (t) that is defined for all real t > 0 or t = 0 
as the integral:

 
An interesting property results from the Laplace transform 
of the error function of t (erf t) and its complement (erfc t) 
(see below). Error functions and their complements are known 
to result from Laplace transforms (and their inverses) of 
functions encountered in reaction-diffusion theory, such as 
Bessel functions (15). The error function terms represent the 
stochastic nature of these phenomena:

 
Biodiversity entails the notion of adding up the occurrences of 
distinct species (in a certain area). In order to find a suitable 
function to describe the local biodiversity of a system, we may 

take advantage of the following relations. First, the notion 
of ‘overall survival prognosis’ (Poverall), defined in terms of a 
‘Density of Information Processing’ (DIP) (16), also known as 
‘trajectory density’ (17), in simplified form (18) given as:

 P overall (x age, t) = 1 – Σi,jN ∫∞ t=0 DIP (x,i.t) (1- e -ⱷ(x,i), t) dt

The correspondence of the above formula with the Laplace 
transform (with s being a positive number) is striking:

    ∫∞ t=0 e
-st F(t) dt

although the operational rules here need more clarification. 
For example, the Rule of Addition, the Rule of Scale and the 
Rule of Shift in the Transform Function and/or the Shift in the 
Original Function, are interesting tools (14). Here, the Rule 
of Scale is given as an example, whereby a variable t can be 
replaced by a scalar product at = z (after 14). This will re-
appear in the adaptation to different time scales (see below).

  
The existence of a Laplace transform, moreover, can be 
inferred from the rule that, for functions belonging to a class 
A, such a Laplace transform exists. Namely, when F(t) is of 
some exponential order as t → ∞ , such that |F(t)|< Met for all t 
≥ T > 0 (14). For functions of this class A , the integral is then 
the sum of two integrals, the first being integrable when F(t) is 
piecewise continuous, the second vanishes for s > σ. Allowing 
s → ∞ the result was found that lim s→ σ f(s) = 0 , whenever 
F(t) Ꜫ class A (14). The latter properties can be attributed to 
the overall survival prognosis described above (Poverall). Given 
a fractal distribution (in space as well as in time) of a species in 
an ecosystem, the piecewise-continuity property is applicable 
too.

Obviously, when extrapolating the survival probability from 
a multicellular organism to a multi-species ecosystem, it is 
no longer the individual’s survival rate that counts, but the 
probabilities of individuals of a species to give birth to their 
offspring before being killed by a predator (most notably from 
another species), from disease or by some accidental form of 
death. So, the death of an individual may become a life-saving 
event for its predator. (The interaction with the human species, 
in particular, will receive some attention below). Moreover, 
not only the survival rates of different species (as a collective 
of individuals following a certain demographic distribution), 
but also the mixture of different species is at stake (see also 
Implications for biodiversity resilience and ecosystem 
robustness). Therefore, some biodiversity index as Yule’s 
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‘characteristic’ (Y) (19) has to be involved, of the form:

 Y = N2 /  ΣNi (Ni -1)

The latter expression in fact gives an estimate of the proportion 
of the number of individuals (squared) found in an area, 
divided by the sum of squares of the abundance numbers of 
different species, resulting in an estimate of the diversity of the 
sample (7). The importance of an area correlate of the survival 
probability is discussed below. An important caveat should 
be given to the possible impact of random sampling (within 
a limited array of trophic levels) giving rise to the so-called 
‘gate keeping’ bias, as explained previously (20). Moreover, 
biodiversity estimation does not coincide with counting the 
animals in a zoo, or, it is not optimized by keeping the maximal 
number of species per km squared (20).

Finally, it is a typical trait of natural ecosystems, obtained from 
a vast experience through generations of observers, that the 
stability of an ecosystem is not only based on the presence 
of specific prey animals or plants, but also on the occurrence 
of species from a number of different trophic levels. These 
include e.g. the primary producers, the herbivores, predators, 
top-predators, and also organisms involved in decay of organic 
material (reducers). When regarded at a global dynamic scale, 
this leads to quite unmanageable formula’s for the (global) 
biodiversity decline (or resilience) in time (6).

How to define the biodiversity at a local scale or the local 
biodiversity, taking advantage of its fractal nature? As 
beautifully explained by Benoit B. Mandelbrot (1924-
2010), some self-evident observations paved the way for the 
development of a fractal theory of the geometry of nature (21). 
Or, the fractal nature of the living biosphere following the 
evolutionary process, mirrors the fractal nature of the Earth’s 
geology (22). 

For instance, taking Richardson’s so-called coastline function 
as example, for the total length (L) of the coast of for instance 
Great Britain, in terms of a number (F) of fragments of length 
ε is described by:

    L (ε) = F ε1 – D

with D the so-called fractal dimension(21). According to 
Mandelbrot, the following, general expression can be used 
for a number of N fragments of length r, D being called the 
similarity dimension:

 log r (N) = log 1 / N 1/D = - (log N) / D

In order to transfer this characterization of a fractal geometry 
to a dynamical ecosystem, for instance the fractal biodiversity 
interface (7), N may represent the number of interacting species 
(competitors, predators, parasites, etc.) in a characteristic 
spatial environment with characteristic size D. We will come 
back to the relation between trophic level, habitat-characteristic 
size and characteristic time-scale (see below).

How to describe the dynamics of this biodiversity interface in a 
stressed ecosystem, such as in the present biosphere?

A well-known application of Laplace transformation is the 
technique of time-iterative convolution of correlation functions 
(23). This offers an interesting instrument for the dynamic 
behavior of ecological networks at a local scale. In simplified 
form, when the local biodiversity is described in terms of 
functions f1 (t), f2 (t), the convolution transformation is defined 
as the product of the Laplace transforms (F1, F2), as followed:

 
A convolution of f1 (t) and f2 (t-τ) is possible, wherein t 
and τ (tau) may also refer to two different time scales, t 
being the ecosystem time (or real time). On the other hand, 
τ (tau) represents the perceived time (of an animal) before it 
is disturbed by human interference (in the sense of leading 
to the animal’s death by hunting, its being captured or 
simply disturbed by human encounter). Consequently, τ (A) 
depends on the territorial size of the animal’s habitat (and 
by generalization the species habitat) and the distance to the 
border (interface). As a working hypothesis, we suggest that  
τ (A) is proportional to a characteristic size of the animal (L) 
and its velocity (L/t), or:

   
with α, β.., the species-specific parameters (describing how the 
body size, velocity and area are interrelated for a species), α> 
0 and β>1. For plant species, velocity is replaced by the time 
window (duration of blossoming, size of the seeds, etc.) of the 
flowering of the species and spreading of the seeds. Likewise, 
the dependence of one species towards another (that in many 
cases are required for a species in order to survive), may also 
be expressed in terms of a series of power terms or constituting 
a polynomial in N terms (N for number of species concerned).

To account for different habitat sizes and correlated time 
scales, an iterative procedure is a well-known approach. 
Hereby, a combined approach, taking advantage of the Laplace 
transforms of polynomials and of integrals, in theory, can be 
considered (14) (not worked out in this paper).

Finally, the successive dynamic descriptions of the local 
biodiversity correspond to the probabilities of transitions 
in a Markov chain. Here, a strong analogy exists with the 
iteration function that subsides the Mandelbrot set (M), namely 
following the iteration (6),(21):

 Pc: z → z2 + c

Resulting in the set M of points of the set of complex numbers 
C, that fulfills the supremum norm:

  M = { c Ꜫ C: sup Pc
∞(0) < ∞}
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The iteration function Pc tends to a finite maximum (depending 
on the value of c), that may be useful as a boundary condition 
in terms of the fractal dimension (D) and number of interacting 
species (N) (see above). In theory, but only then, this 
characteristic may enable to extrapolate the local behavior of 
a fractal network to the generalized network characteristics, 
such as the critical percolation probability, the critical 
dimensionality and the biodiversity resilience characteristics of 
a (local) ecosystem (6) (see also Implications for biodiversity 
resilience and ecosystem robustness).

Implications for biodiversity resilience and ecosystem 
robustness
The problem of finding a mathematical, in particular a 
numerical correlate of a typical phenomenon in nature, reminds 
us of the example of the ratio between the actual length of a 
river ‘from source to mouth’ and their direct length ‘as the 
crow flies’ (24). In fact, this ratio appears to approximate the 
value of the number π (= 3,141592…) (24), a finding that in 
the case of the river ratio was believed to be the result of ‘a 
battle between order and chaos’. According to Simon L. Singh 
(°1964, Somerset, UK), the physical explanation of the course 
of the river allegedly was formulated by Albert Einstein (1879-
1955) as a combination of a ‘tendency towards an ever more 
loopy path’ (designated as ‘chaos’) and the natural process 
of curtailing the chaos by short-cutting the loops and the 
formation of ‘ox-bow lakes’ (24).

Given the latter metaphor of the length ratio of the winding 
river (actual length vs. bird’s eye-view), the following intuitive 
drawing of a biodiversity deployment is illustrative (Fig. 1). 
Between the extremes where an area is occupied by merely one 
species (bringing its competitor[s] to the edge of extinction) 
and the opposite situation (where that very species becomes 
extinguished), an infinite array of intermediate states may be 
drawn. These two extreme positions are reminiscent of the 
so-called hysteresis cycle, a typical loop cycle in bi-stable 
ecosystem dynamics (25). Interestingly, in the case of plant-
pollinator systems which are extremely important for global 
biodiversity and food security, H. (26) found weak empirical 
evidence for an effect, although statistically non-significant, 
of the degree of network connectedness. Using synthetic 
networks generated by random plant-pollinator links (with 
experimental data obtained from the isles of Mauritius), they 
were able of further refining and strengthening their analysis. 
Moreover, they concluded that higher degrees of biodiversity 
and network connectedness enhance the system’s resilience to 
disturbance (26).

Figure 1: Symbolic representation of the fractal notion of 
Woodland-Grassland interface (also applicable to other border 
ecosystems, like Coral Reefs, Mangroves forests). (see ref. 7 

for more ecological details).

In fact, this property of network connectedness has to be 
expanded further, as it appears that ‘rich’ ecosystems may 
often generate biodiversity hot spots (6). Otherwise, in 
rather desolate habitats, like in the (sub)arctic and alpine 
environments, still a fewer number of species may constitute 
(stable) ecosystems (20).

In contrast to Huang and D’ Odorico’s mean field approach 
(25), (26) the fractal approach starts from the dynamics 
of the border interface (7). In the 2D-representation of the 
interface (Fig. 1), e.g. between woodland and grassland (or 
mangrove coastlines, coral reefs), time (t) can be added as 
a third dimension, or replace one of the spatial dimensions. 
The undulating borderline may therefore also represent the 
dynamic alterations of the ecosystem. Taking one step further, 
the 2-dimensional borderline also translates into the survival 
pathway (as a whole) of a number of interacting species in 
their environment (Fig. 2).

Figure 2: Deconstruction of the fractal Biodiversity interface 
(see Fig. 1). The interface consists of interacting plant and 
animal species, their interactions here being represented by 
so-called open trails after (16). Moreover, interactions can 
be further analyzed at subsequently smaller scales, until the 
micro-scale of interacting chemical elements (C,N,O,S,P), the 
proportion between them playing also a key role in enabling 

growth and metabolism of the living ecosystem (see 35).
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However, the (theoretical) applicability of the methodology 
of Laplace transformation also recalls an encounter with the 
Demon of Laplace. Here, it is applied to the macroscopic realm 
of the ecosystem’s biodiversity. Transferred to the atomic level, 
Laplace’s demon signifies that if someone (called the demon) 
“knows the precise location and momentum of every atom in 
the universe, their past and future values for any given time are 
entailed”, and can be calculated from the laws of Newtonian 
mechanics (27). Similar to the question of predictability of the 
fundamental particles in the universe, in which case quantum 
mechanics and the laws of thermodynamics have counter-
indicated this idea of Laplacian determinateness, also here 
some level of indeterminacy is perceived.

This indeterminacy recalls some analogy with the entropy 
notion (see Entropy: definitions and relation between area 
and amount of information). Although we may not have a 
microscopic or nanoscale correlate of the entropy of a local 
ecosystem at the border/interface, we may - for the reason of 
argument - define a change of entropy in terms of the linear 
displacement of a new element, say an individual of/or a (new) 
species entering the ecosystem’s environment, towards the 
border/interface. This is similar to the arguments of Bekenstein 
and Verlinde (see Entropy: definitions and relation between 
area and amount of information). For the positive relation 
between entropy (increase) and distance to the border area 
(in Bekenstein’s model it is the area of a black hole) (5,13), 
the linear coefficient needs to be positive too. This would 
implicate that the entropy of the interface is augmented, when 
species are added and the total number of degrees of freedom 
of the interface/border increases (or the number of nodes in the 
scale-free networks discussed below). A different perspective 
is that when the exact position of an individual (or species 
or node belonging to the network) is established at a certain 
moment at a certain distance separated from the interface. The 
question then is whether the number of degrees of freedom of 
the remaining elements of the ecosystem is lowered, or not. 
For instance, the interference with one individual (or species) 
may have an effect on the other individuals/species (that may 
eventually cross the border-interface and are no longer in 
sight). So, adding or removing an element both may result in 
enhancing the entropy of the whole, which produces a paradox 
with the foregoing (when an element is added, the entropy 
grows). A somewhat naïve intuitive explanation, especially 
adapted for the rather myopic naturalist-photographer, is 
that of making photographs of an object that is somewhat 
separated from the actual focal distance (distance between 
the photographer and the focal plane of a natural scene). We 
can see the object, but it is blurred compared to the rest of 
the image in focus. Or vice versa, the selected object is sharp 
and the remaining lot is blurred. Defining the actual location of 
one species or individual, interferes with the biodiversity of the 
system, but doesn’t lower the entropy of the residual group (of 
species/individuals).

Apart from the criticism that for the second law of 
thermodynamics to hold, a closed system is needed (and 
the planet can be regarded as such, but by definition not a 

local border/interface). The 2 points of view pictured above 
nevertheless are truly conflicting, if we expand the notion of 
interface to the entire biosphere of planet Earth. Moreover, 
an important contribution of migration of animals, plant 
seeds, etcetera, to biodiversity has been well-established 
(20). Apparently, this paradox illustrates two conflicting 
paradigms. On the one hand, the all-knowing, anthropogenic 
or Laplacian view on biodiversity as the sum of all positions 
of all individuals of all species (in the global biosphere, or in 
a distinct ecosystem), versus the global state of a by far still 
unknown system, designated as Nature.

Can this paradox be avoided at a more abstract level? That is 
an interesting question, which so far remains unanswered.

Returning to a true ecosystem, we have to realize that survival 
until the moment of successful reproduction enables to 
extrapolate from individuals to the species involved (i.e. when 
also its offspring is ready for reproduction: so early death of 
the offspring doesn’t count as successful!). Of course, we 
have to make abstraction of more biologically relevant data, 
in order to make a predictive model work. For instance, 
when not all male/female individuals of a species take part 
in reproduction (because of some mechanism of competition 
like in deer herds, or in the [Black] Grouse [Tetrao tetrix] or 
in many social insects..), the individuals that don’t actually 
have offspring may equally well contribute to the struggle 
to transmit the best characteristics to the next generation. 
Therefore, even a predator feeding on the enfeebled or 
diseased individuals, eliminating a surplus of one species at 
the cost of the environment, may finally help the survival of the 
prey species. Finally, if one simplifies the complex ecological 
interaction pathways between species as either subsistent or 
noxious to the co-habitation of these species, this would allow 
for the construction of multi-nodal complete graphs (28). 
The application into ecology of Combinatorial Mathematics, 
such as the so-called Ramsey Numbers (28), may imply that 
interactions between two species can be interpreted as either 
predatory, competitive (for the same food source, shelter or other 
commodity), commensal or neutral (see Possible application 
of Combinatorial Mathematics in Ecology). However, the 
reciprocity of these interactions in general is not guaranteed, 
or it is not consistent for all age groups or environmental 
conditions (such as with famine or abundant food supply), let 
alone the numerous reported cases of cannibalism within the 
own species (e.g. in lions, bears, etcetera). So, mathematical 
modelling necessarily detracts from the biological complexity 
of the real ecosystem.

One or a few important result(s), however, that may be derived 
from complexity analysis, is (are) the notion of introducing 
(adding) or eliminating (subtracting) small numbers of species 
from an ecosystem, and the notion of critical dimensionality 
of the network. In theory, a mean field value of the critical 
dimensionality (of a hierarchical cluster) (6) may be defined 
in analogy with the fractal formulas for the critical percolation 
of a network as described by Mandelbrot (21). In practice, 
however, these theoretical notions are hard to define in an 
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actual ecosystem with multiple trophic levels, where many 
species may still be not yet known nor determined, or simply 
not accounted for in the actual biodiversity estimation (20).

Another question has been raised, derived from certain 
approaches to ‘manage’ the species composition of border 
habitats (e.g. between forest and grassland) by controlling, 
resp. eradicating the wanted resp. unwanted seedlings, etc. It is 
related to the important question: what is the effect of adding or 
removing a species into/from a habitat, in particular the border 
zone, on the biodiversity of the border zone? As we discussed 
in this paragraph, there indeed seem two possible approaches 
to estimate biodiversity, one from a deterministic, Laplacian 
viewpoint, the other from a more observational, stochastic a 
posteriori approach.

Possible Applications of Combinatorial Mathematics in 
Ecology
In combinatorics, F.P. Ramsey’s (1903-1930) theory (29) has 
been suggested to offer a wide range of possible applications 
into probabilistic problem solving (28). In a nutshell, Ramsey’s 
theorem, based upon which later the term Ramsey’s Theory was 
coined (30), stated that in any sufficiently large system, how 
chaotic it may seem, there always have to be certain patterns 
of order (to be discerned). In graph-theoretic forms, the theory 
states that in any sufficiently large complete graph (meaning 
that all nodes – or vertices - of the graph are connected by 
so-called edges), where edge labeling has been applied (for 
instance with two or more distinct colors), a least positive 
integer exists indicating the occurrence of monochromatic 
subgraphs (e.g. triangles). The extension for any finite number 
of (more than two) colors states: “for any given number of 
colors (c), and any given integers (n1, n2, n3,… nc), there is a 
number R (n1, n2, n3,… nc), such that if the edges of a complete 
graph are colored with c different colors, then for some i 
between 1 and c, it must contain a complete subgraph of order 
ni whose edges are all of color i (…)” (30).

Applying this combinatorial paradigm, requires some 
simplification from the previous complexity of ecological 
interactions (Implications for biodiversity resilience and 
ecosystem robustness). The most simple approach is to 
consider only two colors or flavors of interspecies interaction, 
let us say the ’interdependent’ (one species is a predator or 
feeds on another species, or one species limits the growth of 
the other) and ‘independent’ or not-interfering/neutral type 
of interaction. In a more elaborate version of the application, 
more types of interaction and subtler ecological mechanisms 
could be introduced. A direct and simple result is that the 
minimum number of species in such a system would require a 
Ramsey number of 6 (for two colors), or R (3,3) = 6 for  
c = 2 (Ramsey’s Theorem, 2023). It is also noteworthy that it 
has been proven that R (4, 4) = 18 and R (4, 5) = 25, whereas 
the exact value of R (5, 5) is still unknown (but proven to 
be somewhere between 43 and 48) (30). Translated into an 
ecological argument, this would mean that at least six species 
are needed to contain two mutually independent interacting 
species groups (of at least 2 ‘colors’ of either interacting or 

non-interacting species). From this interpretation, however, it 
is hard to infer a conclusion stating that ecosystems of fewer 
number of species (say five) cannot thrive. For, complete 
graphs imply that between each pair of species only one type 
of ‘relation’ may exist, which is far from the experienced 
flexibility of Nature.

Although the pioneering work of Paul Erdös (1913-1996) and 
colleagues (31), already in 1947 led to an important result for 
introducing the probabilistic method in calculating exponential 
lower (and upper) bounds for the Ramsey numbers, many 
improvements of the theory are awaited to date (30). Progress 
has been made by the introduction of Induced Ramsey Numbers 
(on a graph H) (rind (H)) (30), where also not-complete graphs 
could be included into the analysis (including cycles, paths 
or stars on k vertices, where rind (H) is linear in k) (32). Also 
the so-called 1-degenerate graphs or trees were included in 
the Induced Ramsey Number theory, although the Burr-Erdös 
conjecture for the usual Ramsey numbers gave contrasting 
results on the linearity of r (H) for trees (or, so-called ‘open’ 
graphs), compared to the rind (H) (30, 31). For the time being, 
the still unproven Erdös conjecture that rind (H) ≤ 2ck is a good 
starting point providing an upper bound for general induced 
Ramsey numbers. For lower bounds, ‘at least’ the Ramsey 
numbers can be used, for which in some particular cases the 
value is known (see above).

In scale-free networks, Albert and Barabási (33) demonstrated 
that the connectivity distribution follows a power law, when 
certain restrictions were met for the number of the nodes, 
corresponding to a low connectivity state typical of an 
evolving network (23). There is only a faint similarity between 
the former bounds and the lower, resp. upper bounds in 
Mandelbrot’s interpretation of percolation theory (21). With 
a critical probability derived from Bernouilli’s (1700-1782) 
notion of percolation (pcrit), Mandelbrot defined an upper 
bound for the critical fractal dimension (Dcrit) from:

 bDcrit > bE + ½ bE-1

(with b being the lattice base giving rise to bE subdivisions or 
intervals) (6). A lower bound was derived for b>>1, namely 
Dcrit > E + logb p crit (6).

The notion of lower/upper bounds may become useful to find 
a limit for the iteration procedure by calculating successive 
Laplace transforms (convolutions over a period long enough 
to allow for interactions between all species in an ecosystem, 
as well as spatial dimensions small enough to account for all 
trophic levels). Taking the analysis back to the realm of living 
ecosystems, the probabilities of interactions between species 
(being either dependent, neutral or otherwise) obviously 
depend on the probabilities of one species encountering another 
species. For large solitary carnivores (like the Eurasian lynx 
[Lynx lynx], Snow leopard [Panthera uncia] (34), ... ), where 
animals sometimes need months to cross their entire territory, 
where only occasionally individuals of the same species are 
met (which is essential for reproduction), these occurrences 
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may be extremely rare indeed. Otherwise, large herbivores 
tend to graze on herbs and grass almost constantly, with 
only some time for ruminating or resting in between several 
grazing periods. Therefore, a time-integrated averaging of the 
occurrence of interspecies interactions is needed, taking into 
account the abundance, territorial dimensions (and the time 
needed to cross one’s territory), reproductive success, et cetera 
(e.g. large animals have a longer life span, but procreate less 
offspring, according to the Janis – Carrano hypothesis) (7) (see 
also Time-integrated convolution of fractal functions using 
Laplace transformation).

Concluding Remarks
Starting from Schrödinger’s metaphor of a cat that could be 
both death or alive depending on the probabilistic nature of a 
quantized decay process (see Introduction) and Bekenstein’s 
notion of a relationship between entropy and surface area (of a 
black hole), we proposed the question whether the uncertainty 
of biodiversity alterations could be linked to an entropy or 
negentropy definition related to evolving ecosystems. 

Transference into network connectivity theory, implicates this 
question is translated into: what is the effect of adding nodes 
(vertices) to a network on system’s biodiversity ? And what 
is its effect on the system’s entropy? These questions are 
especially relevant in case of attempts to exert a ‘controlled’ 
management of an ecosystem, in particular the ecosystem’s 
interface or boundary between different habitats. 

Moreover, these questions reflect two different scenarios of 
ecosystem dynamics. The classical scenario is that of a natural 
evolution, meaning that natural selection is a means for animal 
species to find highly or unusual conditions for survival. This 
is in fact a race, which in time is won by the (individuals of a) 
species that are best adapted to these ‘unusual’ conditions. For 
species that are filling in a new or empty niche, the probability 
of finding enough prey/food/shelter before the time window 
of passing their genes to the following generation, determines 
their adaptive fitness. 

The other scenario is that of the ‘anthropogenic’ collapse of 
the biosphere: what is the probability of finding animals in a 
survival area controlled by human surveillance, in terms of 
numbers of species and individuals of a species (the relative 
abundance) in a given area of an ecosystem?

In the second scenario, it is not surprising to find a general 
impairment of plant and animal biodiversity in a wide range 
of biotopes, the many exceptions put aside. We previously 
discussed the anthropogenic nature of the distinctions and 
categories developed in modern scientific literature, in order to 
tackle the multiple levels of ‘biodiversity’ (35). The question 
whether adding or removing a species (as a network vertex) 
augments the entropy/negentropy of the biosphere, not only 
has a methodological and theoretical connotation, it is also of 
practical importance for the biosphere’s sustainability.

The question how the entropy of such an ecosystem change 
is related to the Second Law of Thermodynamics, however, 
is far from evident. In the present review, we have abstained 
from commentaries on previous argumentations on temporal 
windows for entropy decreases, for instance presented by Ilya 
Prigogine (1917-2003) (36). Many reasons can be given for 
this abstinence, such as the absence of a causality horizon, 
which element plays an important role in Bekenstein’s theory 
of black holes. 

In the case of the biodiversity of the interface between different 
ecosystems, there is no absolute barrier between either regions 
separated, so there is in fact no preferred time direction of the 
system dynamics, except for the distinction between the man-
made and natural scenarios of system change. So there is also 
no causality horizon, in the original sense of the notion (4, 13). 
However, a virtual ‘causality horizon’ may be discovered here, 
that has to be regarded as a horizon of a conceptual kind, just 
as suggested by Verlinde (4, 13) (see Entropy: definitions and 
relation between area and amount of information). Namely, 
it is rather a ‘horizon’ between the known or controlled, 
anthropogenic information (similar to AI), and the unknown 
spaces of Nature. Or, in the words of Michel Foucault (1926-
1984) in The Order of Things (37), as quoted before (35): “A 
dark space appears which is (must be?) made progressively 
clearer. That space is where ‘Nature’ resides, (…)” (37).
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