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Abstract
The laplacian equation is a second –order partial differential equation which is useful for the determination of the 
electric potential in free space or region. In this article, the Riemannian geometry of space-time was applied to 
obtain affine connection coefficients, Riemann christofell tensor, Ricci tensor and exterior Einstein’s field equation 
for spherical field. The result obtained in the limit of weak field reduces to laplacian equation which agrees 
with the concept of general relativity, and has a gravitational scalar potential of two functions, which does not 
differ significantly from Newton dynamical theory of gravitation. The solution further confirms the assumption 
that Newton dynamical theory of gravitation is a limiting case of Einstein’s geometrical gravitational theory of 
gravitation.        

Introduction
Einstein ‘s theory of gravity, is the geometric theory of 
gravitation published by Albert Einstein in 1915 and the current 
description of the gravitation in modern Physics (Bergmann, 
1947). General relativity generalizes special relativity and 
refines Newton law of universal gravitation, providing a 
unified description of gravity as a geometric property of space 
and time or four dimensional space-time (Weinberg, 1972).
 
The term General Relativity is the most widely accepted theory 
of gravitation (Howusu, 2010; Chifu, 2012). The equations are 
in the form of tensor equation which related the local space-
time curvature expressed by the Einstein tensor with the local 
energy and momentum within that space-time expressed by 
the stress-energy tensor (Misner et al., 1973). In this article 
from the Einstein geometrical field equations for homogenous 
spherical   bodies with tensor field that varies with time and 
radial distance using Riemannian golden metric tensor we 
obtained laplacian equation in the weak field   limit and is 
second –order partial differential equation which consists of 
two important properties. The first property is that the solution 
of laplacian equation is unique once solved under suitable 
number of boundary condition used and second property 
is that the solution of laplacian equation hold good with the 
superposition principle.  

The Laplacian occurs in many differential equations describing 
physical phenomena. The general theory of solution to 
Laplacian equation is known as potential theory.
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Construction of Metric Tensors and Affine Connections 
Consider a body in spherical geometry with a tensor field that 
varies with time and radial distance. The coefficient of affine 
connection were calculated (Schwarzschild’s, 1916; Howusu, 
2008; Chifu & Howusu, 2008) using the equation below: 

 
1 ( )
2

g g g gµ µξ
αβ αξβ αξβ αβξΓ = + − 		  (1)

Where,

	
µ

αβΓ  = coefficient of affine connection

	 g µξ
  = covariant metric tensor

	 gαξβ  = contravariant metric tensor  
The covariant metric tensors for this distribution of mass or 
pressure is given by (Howusu, 2009; Howusu, 2007).
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Where,
f(t, r) is a gravitational scalar potential, determined by the 
mass or pressure and possess symmetries of the latter’s. 
In approximate gravitational field, it is equal to Newton’s 
gravitational scalar potential exterior to the spherical mass 
distribution.

The contravariant metric tensors in spherical polar coordinate 
in the are given by (Gupta, 2010)
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	 gμν = 0, Otherwise				   (11)   

To obtain the coefficient of affine connection, we use 
the covariant and contravariant metric tensors, the affine 
connection coefficient are given by  
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  Γαβ
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Construction of Einstein equation    
The Einstein’s field equation (EFE) exterior to a homogeneous 
spherical distribution of mass is given by (Misner et al., 1973; 
Tajmar, 2001; Howusu, 2008; Chifu, & Howusu, 2009).

  
1 0
2

G R Rgµν µν µν= − = 				   (26)
where,
	 Guv = Einstein’s Tensors
	 Ruv = Ricci Tensors
	 R = Riemann Scalar
	 guv = Covariant Metric Tensor                   
It is observed (Misner et al., 1973) that the exterior field 
equations along the G11, G22 and G33 converge within the 
exterior field, similarly along the interior field.
For mathematical convenience, we choose G00
Hence the field equation is given by

   00 00 00
1 0
2

G R Rg= − = 			   (27)

The coefficient of affine connections of this field were used 
to construct the Ricci tensor and the curvature scalar given 
respectively as:
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Thus Substituting equation (28) (29) and (2) into (27) equation 
and rearranging gives
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In the weak field limit of the order c0, equation (30) reduces to
 2 ( , ) 0f t r∇ = 					     (31)

Equation (31) is known as Laplacian equation and 2∇ is known 
as the Laplacian operator and f(t,r) is a gravitational scalar 
potential.

Conclusion 
From the result obtained in equation (31), we have established 
the fact that for a weak gravitational field, the exterior 
Einstein’s geometrical gravitational field equation reduces 
Laplacian equation in the weak field limit of the order c0 
which does not differ significantly from Newton dynamical 
theory of gravitation. But for intense gravitational field, the 
result does not reduce to Laplacian equation and diverges from 
that of Newton’s gravitational theory because of additional 
correctional terms which are not found in the existing once. 

Interestingly, we also discover that the solution obtained, that 
is equation (31) is the Newton dynamical scalar field equation. 
It is indeed a profound discovery, it confirms the assumption 
made by (Sarki et al., 2018); that Newton dynamical theory of 
gravitation (NDTG) is a limiting case of Einstein’s geometrical 
gravitational field equations (EGGFE). It Experimentally 
shows equivalence principle of physics with the dependency 
of the gravitational scalar function on time and radial distance 
only. 

The laplacian equation   obtained in this research work can find 
application in the following field
•	 Any equation which is directly related to a linear 

differential equation can be easily solved using laplacian 
equation. 

•	 The laplacian equation are used to describe the steady-
state conduction heat transfer without any heat sources or 
sink. 

•	 Laplacian equation can be used to determine the potential 
at any point between two surfaces when the potential of 
both surfaces is known. 

•	 The capacitance between two surfaces can be found using 
Laplace’s and Poisson’s equation
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