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Abstract
The modification of Newton dynamical theory of gravitation (NDTG) by Einstein’s geometrical gravitational field 
equations (EGGFE) do not invalidate Newton dynamical theory of gravitation or require its replacement instead 
the Einstein’s field equations differs meaningfully from those of the Newton’s field equations only for object moving 
at relativistic speed. In this article, an exact analytical solution of   Einstein’s geometrical gravitational field 
equation interior to a static homogeneous spherical bodies whose tensor field varies with time and radial distance 
was constructed and solved. It was observed that within the interior field, the solution converges to Newton 
dynamical scalar potential which is thus an extremely discovery with the reliance on two arbitrary function. The   
result obtained in the limit of weak field is equal to laplacian equation which does not differ significantly from 
Newton dynamical theory of gravitation. The solution further confirms the assumption that Newton dynamical 
theory of gravitation is a limiting case of Einstein’s geometrical gravitational theory of gravitation.        

Introduction
General Relativity, also known as the general theory of 
relativity and Einstein ‘s theory of gravity, is the geometric 
theory of gravitation published by Albert Einstein in 1915 and 
the current description of the gravitation in modern Physics 
(Bergmann, 1947). General relativity generalizes special 
relativity and refines Newton law of universal gravitation, 
providing a unified description of gravity as a geometric 
property of space and time or four dimensional space-time 
(Weinberg, 1972).
 
The term General Relativity is the most widely accepted theory 
of gravitation (Howusu, 2010; Chifu, 2012). The equations are 
in the form of tensor equation which related the local space-
time curvature expressed by the Einstein tensor with the local 
energy and momentum within that space-time expressed by the 
stress-energy tensor (Misner et al., 1973).

After Einstein’s publication of geometrical gravitational field 
equation in 1915, the search for their exact and analytical 
solution began for all the gravitational field in nature (Howusu, 
2010; Chifu & Howusu, 2009; Chifu, 2012; Maisalatee et al., 
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2020). The first to construct the exact solution of this field 
equation in a static and pure spherical polar coordinates in 
1916 was Schwarzschild by considering bodies which are 
astrophysical such as the sun and stars. In Schwarzchild’s 
metric, the tensor field differs with radial distance only.

A new method and approach was introduced to formulate 
exact analytical solutions (Chifu & Howusu, 2009) as an 
extension of Schwarzschild’s method. This new approach took 
into consideration the fact that tensor field of astrophysical 
bodies does not depend on radial distance only as indicated 
in Schwarzschild’s equation. In this article, we show how 
exact analytical solution of the interior field equation can be 
constructed in the limit of c0 in a gravitational field for time 
varying spherical massive bodies using the new method and 
approach.

Formulation of Einstein equation    
The Einstein’s field equation (EFE) interior to a homogeneous 
spherical distribution of mass is given by (Misner et al., 1973; 
Tajmar, 2001; Howusu, 2008; Chifu & Howusu, 2009).
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Where Tuv is the energy-momentum tensor due to any 
distribution of mass or pressure 
G is the universal gravitational constant.

Consider a homogeneous mass distribution in a weak field 
limit. We can neglect the contribution from the source, the 
energy-momentum tensor given by
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Where,
         po  is the density 
        c   is the speed of light in vacuum.
Now substituting equation (2) into (1) yields equation 
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It is observed (Misner et al., 1973) that the exterior field 
equations along the G11, G22 and G33 converge within the 
exterior field, similarly along the interior field.

For mathematical convenience, we choose G00
Hence the field equation is given by

     0
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The coefficient of affine connections of this field constructed 
were used to construct the Ricci tensor and the curvature scalar 
given respectively as:
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Substituting equation (5) and (6) into (4) equation gives
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Introducing a Laplacian operator yields
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In the weak field limit of the order c0, equation (8) becomes
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Equation (9) is in line with the concept of general relativity, 
which is equals to Laplacian equation and has a gravitational 
scalar potential of two functions.

Conclusion 
From the result obtained in equation 9, we have established the 
fact that for a weak gravitational field, the result of Einstein’s 
geometrical gravitational field equations does not differ 
significantly from Newton dynamical theory of gravitation. 
But for intense gravitational field, the result diverges from 
that of Newton’s gravitational theory because of additional 
correctional terms which are not found in the existing once, 
thus equation 9, is the Newton dynamical scalar field equation. 
It is indeed a profound discovery, it confirms the assumption 
made by (Sarki et al., 2018); that Newton dynamical theory of 
gravitation (NDTG) is a limiting case of Einstein’s geometrical 
gravitational field equations (EGGFE), and this gives more 
light on the report of (Kumar et al., 2012). It Experimentally 
shows equivalence principle of physics with the dependency 
of the gravitational scalar function on time and radial distance 
only.
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