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Abstract
This study introduces optimal designs for the Exponential nonlinear model using nonparametric Bayesian 
approaches. Nonlinear regression models find extensive applications across various scientific disciplines. It is 
vital to accurately fit the optimal nonlinear model while considering the biases of the Bayesian optimal design. By 
utilizing the Dirichlet process as a prior, we present a Bayesian optimal design. In this research paper, we employ 
a representation to approximate the D-optimality criterion considering the Dirichlet process as a functional tool. 
Through this approach, we aim to identify a Nonparametric Bayesian optimal design.

Introduction
As discussed in our previous work (Nanvapisheh et al., 
2023; Nanvapisheh , et al., 2024; Nanvapisheh et al., 2024), 
in experimental design, the term “optimal design” refers to a 
specific class of designs categorized according to particular 
statistical criteria. It is widely acknowledged that a well-
designed experiment can significantly enhance the accuracy of 
statistical analyses, specifically the accuracy of the parameters 
corresponding to the size of the parametric confidence region. 
Consequently, numerous researchers have dedicated their 
efforts to address the challenge of constructing optimal designs 
for nonlinear regression models. Experimental design plays a 
pivotal role in scientific research domains, including but not 
limited to biomedicine and pharmacokinetics. Its application 
in these fields enables researchers to conduct rigorous 
investigations and yield valuable insights.

Optimal designs are sought using optimality criteria, typically 
based on the information matrix. In nonlinear models, the 
presence of unknown parameters introduced complexities 
in the design problem, as the optimality criteria depends on 
these unknown parameters (Atkinson et al., 2007; Burkner 
et al., 2019). To address this challenge, researchers proposed 
various solutions, including local optimal designs (Aminnejad 
& Jafari, 2017; Chernoff, 1953; Dette et al., 2013; Ford et al., 
1992), sequential optimal designs, minimax optimal designs, 
Bayesian optimal designs (Pilz, 1991; Parsamaram & Jafari, 
2015; Goudarzi et al., 2019; Grashoff et al., 2012; Kiefer, 
1959; Kiefer & Wolfowitz, 1959; Kiefer, 1974), and pseudo- 
Bayesian designs (Kiefer & Wolfowitz, 1959). Chernoff 
(1953) proposed to use a suitable guess of the parameter value 
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which leads to locally optimal design. This approach aimed to 
overcome the difficulties associated with the dependence of the 
design problem on unknown parameters in nonlinear models. 
It’s important to note that local designs for nonlinear models 
are derived subsequent to an initial linearization of the model, 
using the parameter set as a reference point.

The selection of unknown parameters in local designs is 
typically obtained from previous studies or experiments 
specifically conducted for this purpose. The sensitivity of 
the locally optimal design with respect to the initial guess 
of parameter value is demonstrated by Dette et al. (2013); 
Rodriguez-Torreblanca and Rodríguez-Díaz, (2007). A locally 
optimal design do not incorporate any uncertainty in the 
parameter values. One of the proposed approaches, which 
deals with the uncertainty in parameter values, is the Bayesian 
procedure that assumes a prior distribution for the parameter. In 
the Bayesian method, the first step is to represent the available 
information in the form of a probability distribution for the 
model parameter, known as the prior distribution. So that, the 
idea of the Bayesian optimal design is to use the informative 
and/or historical knowledge of the unknown parameters as 
prior distribution. A Bayesian optimal design aims to maximize 
the relevant optimality criterion over this prior distribution. 
Nevertheless, it is crucial to acknowledge that the selection 
of the prior distribution within the Bayesian framework can 
be problematic and may potentially lead to erroneous results. 
The choice of the prior distribution is subjective, relying 
on the researcher’s beliefs, and it significantly influences 
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the final outcome. Unfortunately, the Bayesian approach 
lacks a definitive method for selecting the prior distribution. 
Subjective specification of a prior distribution which captures 
all existing information about the uncertainty of the parameter 
values was employed by many authors such as Chaloner and 
Larentz (1989); Chaloner and Duncan (1983); Burghaus and 
Dette (2014); Chaloner and Vardinelli (1995); Pronzato and 
Walter (1985); Mukhopadhyay and Haines (1995); Dette and 
Ngobauer (1996); Dette and Ngobauer (1997); Fedorov and 
Hackl (2012); Fedorov and Leonov, (2013); Firth and Hinde 
(1997) that have contributed extensively to this field. Chapter 
18 of Atkinson et al. (2007) book provides further reading on 
this topic. Often the choice of the prior is a compromise of a 
representation of uncertainty of the parameter values that may 
not be correct and can lead to misleading decision. Moreover, 
using the custom priors is a restrictive choice of priors, and it is 
possible to distort the actual prior distribution of the parameter. 
Indeed, no single probability distribution can model ignorance 
satisfactory, therefore large classes of distributions are needed. 
In this regards, we show that such a class is attained by 
considering infinite dimensional families of prior distributions; 
we consider the prior distribution function as an unknown 
distribution, which belongs to a class of distribution functions. 
Thus, from a Bayesian point of view, we need to construct a 
prior distribution on the space of all distribution functions. 
Several methods were introduced to construct a prior for random 
distribution. In this paper, we apply a nonparametric Bayesian 
approach that puts a prior on such families. In nonparametric 
Bayesian analysis, the prior process in terms of a probability 
measure P instead of the corresponding distribution function is 
discussed. The Dirichlet process, which is defined by Ferguson 
(1973), plays a central role in nonparametric Bayesian methods. 
Dirichlet Process (DP) involved two desirable properties of a 
prior; First, DP is defined on an arbitrary probability space. 
Second, it belonged to a conjugate family of priors. The aim 
of this paper is to apply Dirichlet process priors to obtain the 
Bayesian D-optimal design.

This research paper presents the optimal design for nonlinear 
models in section 2. In Section3, the nonparametric Bayesian 
D-optimal design for exponential regresion model is presented. 
Finally, Section 4 concludes the paper with some closing 
remarks.

Introduction to Optimal Designs in Nonlinear Models
In the realm of nonlinear experimental design, a common 
scenario arises where in the relationship between the response 
variable y and the independent variable x is given by the 
equation y = η(x, θ)+ϵ where x  χ  R and y is a response 
variable and θ  Θ is the unknown parameter vector and ϵ 
is a normally distributed residual value with mean 0 and 
known variance σ2 > 0. For simplicity, we assume σ2 = 1 
in this problem. If η(x, θ) is differentiable with respect to θ 
then, the information matrix M (ξ, θ) at a given point x can be 
represented as follows: Equation 1 

   		 (1)

There exist several optimality criteria used to obtain the 
optimal design, including D-optimality and A-optimality. 
These criteria are functions of the information matrix and can 
be expressed as follows:

    	
						           (2)
Where ξ denotes a design with two components; the first 
component represents specific values from the design space χ 
and the second component corresponds to the weights assigned 
to these values, so that design ξ can be defined as follows:

      	      (3)

where p represents the number of model parameters (Kiefer, 
1974), and

    (4)

When considering a discrete probability measure ξ with finite 
support, the information function of ξ can be expressed as 
follows (Atkinson et al., 2007):

  			       (5)

Because of the dependence of the information matrix M (ξ, 
θ) to the unknown parameter θ, one approach to address this 
issue is to employ the Bayesian method and incorporate a prior 
distribution of the parameter vector. The Bayesian D-optimality 
criterion can be formulated as follows:

 
						           (6)
where Π represents the prior distribution for θ and the Bayesian 
D-optimal design is attained by minimizing (6).

In certain situations, specifying a prior distribution on the 
parameter space Θ can be challenging for the experimenter. In 
such cases, an alternative approach is to consider an unknown 
prior distribution Π for the parameter θ. In this condition, Π 
is treated as a parameter itself. Consequently, equation (6) 
becomes a random functional, and it becomes necessary to 
determine its distribution or approximation. From a Bayesian 
perspective, we construct a prior distribution on the space of 
all distribution functions to address this issue. To achieve this 
objective, Ferguson (1973) introduced the concept of the DP 
that an overview of it will be provided in the following.

Nonparametric Bayesian D-optimal design
Nonparametric models constitute an approach to model 
selection and fitting, where the size of the models is allowed to 
grow with the size of the data. It is unlike parametric models 
that use a fixed number of parameters. In this section, we 
introduce the nonparametric Bayesian optimal design. In the 
nonparametric Bayesian framework, it is assumed that θ | P 
~ P , where P is a random probability distribution and P ~ Π. 
General method of construction a random measure is to start 
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with the stochastic processes. Ferguson (1973) formulated the 
requirements which must be imposed on a prior distribution 
and proposed a class of prior distributions, named DP (Teh, 
2010). One of the main argument in using the Dirichlet 
distribution in practical applications is based on the fact that 
this distribution is a good approximation of many parametric 
probability distributions. Bondesson (1982); Sethuraman 
(1994); Zarepour and Al Labadi (2012) are among those who 
have contributed to this area. A method of producing samples 
from the Dirichlet process is to use the Polya urn process that 
in the upcoming section, we will discuss about it. Then the 
nonparametric Bayesian D-optimal design for the Exponential 
regresion model is discussed.

Polya Urn Scheme
Polya Urn Scheme was used by Blackwell and McQueen 
(1973) to demonstrate the existence of the Dirichlet Process. 
The method of producing a sample of the Dirichlet Process 
is to use a Polya Urn Scheme (Ghalanos & Theussl, (2015). 
Consider a Polya urn with a(χ) balls of which a(i) are of color 
i ; i = 1, 2, ..., k. [For the moment assume that a(i) are whole 
numbers or 0]. Draw balls at random from the urn, replacing 
each ball drawn by two balls of the same color. Let Xi = j if the 
i th ball is of color j. Then:

   				    (7)

   			  (8)

and in general

   
						      (9)
That n is the number of extracted balls and δX (j) is equal to one 
if Xi = j, otherwise it is equal to zero.

Nonparametric Bayesian D-optimal design for Exponential 
regresion model with Respect to Prior Processes (with 
Polya Urn Scheme as the base measure)
Suppose we have the following regression model:

        	 (10)
therefore, the Bayesian D-optimality criterion, denoted as 
ΨΠ(ξ) can be expressed as follows:

  
				                                  (11)
where Π is the prior distribution for θ. The Bayesian D-optimal 
design is attained by minimizing equation (11). In the 
nonparametric Bayesian framework, we consider P ~ DP(α,P0) 

and its collective representation as . In this 
context, the optimality criterion can be expressed as follows:

               (12)

Chernoff (1953) demonstrated that when searching for a 
local optimal design, there exists an optimal design where all 
the mass is concentrated at a single point within the design 
supports. Caratheodory’s theorem also confirms the existence 
of a one-point optimal design. However, when employing the 
Bayesian optimality criterion, a more complex situation arises. 
Dette and Neugebauer, (1996) showed that with a uniform prior 
distribution, as the support of the prior distribution increases, 
the number of optimal design points for the single-parameter 
model also increases. Chaloner and Verdinelli (1995) suggested 
that if the researcher aims to obtain a one-point optimal design, 
it is advisable to consider a small support for the uniform prior 
distribution. The same principle applies to nonparametric 
Bayesian designs. In this case, assuming a uniform distribution 
over the interval [0, B] as the basic distribution, the one-point 
optimal design can be achieved.

Equation (11) is a stochastic function of the DP. According 
to Ferguson’s definition of the DP, the calculation (3.2) is 
not easily possible, so to address this challenge and obtain 
an approximation of the optimal nonparametric Bayesian 
criterion, methods such as the stick-breaking process is 
employed. Sethuraman (1994) introduced this method as 
a significant approach for generating realizations of the DP. 
Another method has been presented by Zarepour and Ellabadi 
(2012) whose simulation speed and accuracy is much higher 
than the stick breaking process. We used this method in this 
paper.

Now, in this section we consider Polya Urn Scheme as the 
base measure in DP. We get the results by using a nonlinear 
optimization programing with R package Rsolnp (Ghalanos & 
Theussl, 2015). To better understanding of the effect of the α 
parameter, we tabulate the results for four different values of 
α=1, 5, 10, 50, in Tables 1-4. Without loss of generality, we 
consider a bounded design space χ=[0, 1]. Tables 1-4 represent 
the results when the concentration parameter and uncertainty 
in the base measure increase. According to the results, when 
the value of α increases, the support points in two points design 
do not significantly change. The weight of minimum point 
increases rapidly and the smallest point will have the most 
weight that this weight almost increases or remains fixed by 
increasing the concentration parameter. Also for three points 
design, minimum support point has the greatest weight. In 
addition, in the range under investigation, the results show that 
we do not have a three point design for µ = 5, σ = 2, and in 
fact, it converts to the design by less points. This observation 
is more clear for larger concentration parameter. But, by 
increasing the parameter space, optimal two and three point 
designs are obtained.
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Table 1: Nonparametric Bayesian D-optimal designs with truncated normal base distribution and concentration parameter when 
α=1

Parameters Design Two points Three points
µ = 5, σ = 2 x

w

0.223238  0.672626

0.971536  0.028464

−                  −                  −

−                  −                   −
µ = 50, σ = 30 x

w

0.020751  0.189805

0.959810  0.040190

0.018863  0.193065  0.299221

0.993434  0.003970  0.002596
µ = 150, σ = 90 x

w

0.007980  0.197085

0.980722  0.019278

0.007751  0.193707  0.299374

0.988099  0.010318  0.001583
µ = 1000, σ = 500 x

w

0.001488  0.198136

0.998521  0.001479

0.001354  0.200019  0.299828

0.999742  0.000128  0.000130

Table 2: Nonparametric Bayesian D-optimal designs with truncated normal base distribution and concentration parameter when 
α=5.

Parameters Design Two points Three points
µ = 5, σ = 2 x

w

0.323630  0.581538

0.555981  0.444019

−                  −                  −

−                  −                   −
µ = 50, σ = 30 x

w

0.018351  0.189065

0.942754  0.057246

0.018444  0.183531  0.299077

0.986648  0.007353  0.005999
µ = 150, σ = 90 x

w

0.006745  0.187195

0.973256  0.026744

0.006462  0.188178  0.298479

0.986702  0.012083  0.001215
µ = 1000, σ = 500 x

w

0.001035  0.195904

0.996235  0.003765

0.001048  0.198217  0.300620

0.999070  0.000768  0.000162

Now, if we assume the mean of the base distribution to be constant and increase the variance, it can be seen that in the two point 
designs, the smallest point has the most weight. The results related to this case has been presented in the table 5.

Table 3: Nonparametric Bayesian D-optimal designs with truncated normal base distribution and concentration parameter when 
α=10.

Parameters Design Two points Three points
µ = 5, σ = 2 x

w

0.207276  0.599491

0.769156  0.230844

−                  −                  −

−                  −                   −
µ = 50, σ = 30 x

w

0.017722  0.201868

0.945074  0.054926

0.018066  0.182005  0.302160

0.990114  0.002937  0.006949
µ = 150, σ = 90 x

w

0.006342  0.181494

0.971519  0.028481

0.006414  0.179023  0.295396

0.988448  0.010337  0.001215
µ = 1000, σ = 500 x

w

0.000999  0.195064

0.996286  0.003714

0.000992  0.197084  0.300800

0.998194  0.001709  0.000097
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Table 4: Nonparametric Bayesian D-optimal designs with truncated normal base distribution and concentration parameter when 
α=50.

Parameters Design Two points Three points
µ = 5, σ = 2 x

w

0.196904  0.299491

0.769156  0.230844

−                  −                  −

−                  −                   −
µ = 50, σ = 30 x

w

0.018481  0.230227

0.972158  0.027842

0.018248  0.177483  0.311380

0.989506  0.002450  0.008044
µ = 150, σ = 90 x

w

0.006263  0.176120

0.979629  0.020371

0.006218  0.171950  0.301432

0.992705  0.004860  0.002435
µ = 1000, σ = 500 x

w

0.000971  0.193872

0.995262  0.004738

0.000984  0.193383  0.300319

0.997486  0.002201  0.000313

Table 5: Nonparametric Bayesian D-optimal designs with truncated normal base distribution and concentration parameter when 
α=1

Parameters Design Two points Three points
µ = 5,0 σ = 30 x

w

0.022991  0.191695

0.945594  0.054406

0.019425  0.191129  0.296905

0.992596  0.006730  0.000674
µ = 50, σ = 90 x

w

0.014683  0.196830

0.936699  0.01281

0.013089  0.187962  0.302637

0.063304  0.023552  0.000484
µ = 50, σ = 500 x

w

0.004969  0.192861

0.968402  0.031598

0.004082  0.191850  0.300626

0.989670  0.010321  0.000007

Concluding Remarks and Future Works
Nonlinear regression models are widely used in various 
scientific fields, and the Bayesian method is commonly 
employed to obtain optimal designs in such models. However, 
one of the challenges in the Bayesian framework is the subjective 
selection of the prior distribution, which can potentially lead to 
incorrect results. The choice of the prior distribution is often 
based on the researcher’s beliefs, and it strongly influences 
the final outcome. Unfortunately, the Bayesian approach lacks 
a systematic method for selecting the prior distribution. To 
overcome these limitations and reduce reliance on restrictive 
parametric assumptions, nonparametric Bayesian methods are 
pursued. In this study, we consider the prior distribution as an 
unknown parameter and utilize the Dirichlet process to derive 
nonparametric Bayesian D-optimal designs. Specifically, we 
focus on a nonlinear model with one parameter, namely the 
Unit-Exponential distribution. We investigate the Bayesian 
D-optimal design for the exponential regression model using 
a truncated normal prior distribution, examining various 
parameter values. By adopting a nonparametric Bayesian 
approach and utilizing the Dirichlet Process, we aim to address 
the challenges associated with selecting the prior distribution 
in Bayesian optimal design construction. This allows us to 
account for uncertainty and mitigate the impact of restrictive 
parametric assumptions, providing more flexible and robust 
designs for nonlinear regression models.

In this study, we focus on utilizing the Polya Urn Scheme 
as the base distribution in the Dirichlet Process. To better 
understand the influence of the concentration parameter α, 
we present the results in tables for four different values of 
α=1, 5, 10, 50. These tables provide valuable insights into 
the nonparametric Bayesian optimal designs, showcasing 
the distribution of weights and support points. By analyzing 
the results for different values of α, we can better understand 
the impact of this parameter on the design outcomes. This 
approach allows us to explore and evaluate the performance 
of the nonparametric Bayesian optimal designs under varying 
levels of concentration parameter α.

In the investigated range, the results reveal interesting findings. 
For small parameter values, there are no three-point designs 
observed. However, By increasing uncertainty in the base 
measure, another optimal point is obtained with a very small 
weight, resulting in a design where the smallest point has the 
highest weight.

Moreover, as the uncertainty in the base measure and the 
concentration parameter in the Dirichlet Process increase, 
the support points in the two-point designs do not undergo 
significant changes. The weight of the smallest point increases 
rapidly, and it becomes the point with the highest weight. This 
weight tends to either increase or remain relatively stable with 
an increase in the concentration parameter.
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It is important to note that this approach can be applied to 
other optimality criteria and various models with two or more 
parameters. For example, nonparametric Bayesian optimal 
designs using the A- or E-optimality criterion for the nonlinear 
model discussed in this paper, along with a Dirichlet process 
prior, hold potential for further research. We hope to report 
new results in this area in the near future.
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