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Abstract

This paper investigates the effect of basis selection on the derivation of numerical discrete schemes. In many
numerical methods, especially those derived via interpolation and collocation techniques, such as Trigonometric
Series, Orthogonal Functions, Polynomials and Power series, the choice of basis function is often assumed to
influence the resulting discrete formulation. However, this study establishes that, irrespective of the kind of basis
employed, the resulting numerical discrete scheme remains invariant provided that interpolation, collocation,
and evaluation are performed at the same set of points. The invariance underscores the fundamental role of the
interpolation and collocation nodes, rather than the basis itself, in determining the final scheme. The findings
offer a unified perspective on scheme construction, reducing computational redundancy and strengthening the
theoretical understanding of discrete approximations in numerical analysis.
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Introduction
In numerical analysis, discrete schemes derived from a general

pth-order linear multistep method of the form
K
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ajandﬁjare constants,y, andf, ,jare interpolationand collocation
points respectively, and p is the order of the method, are widely
employed to approximate the solutions of differential equations,
integral equations, and other functional problems. These
schemes are typically derived using interpolation, collocation,
and evaluation techniques, which collectively determine the
coefficients and accuracy of the resulting numerical method.
A common perception among researchers is that the choice of
basis-functions such as an infinite sum of monomials known
as power series used by Badmus and Yahaya (2009), Badmus
et al. (2014), Blessing et al (2024), orthogonal polynomials by
Badmus and Subair (2024) or trigonometric functions like that
of Tian et al (2018) and Navnit and Kritika (2023), significantly
influences the formulation and performance of the numerical
discrete scheme. Consequently, much effort is often devoted
to deriving multiple schemes from different bases in pursuit of
enhanced accuracy or stability.

However, when interpolation, collocation, and evaluation are
performed at the same set of points, theoretical arguments
suggest that the resulting numerical discrete schemes should
be invariant to the choice of basis. This observation implies

that the interpolation nodes, collocation points, and evaluation
criteria exert a more fundamental influence on the scheme
than the bases functions themselves. Despite this intuitive
expectation, a unified and rigorous demonstration of this
invariance has remained limited in the existing literature.

This paper addresses this gap by establishing the basis-
invariance of numerical discrete schemes derived under
consistent interpolation, collocation, and evaluation points.
By developing a generalized framework, we show that the
coefficients and numerical properties of such schemes are
essentially determined by the choice of nodes rather than by the
selected basis functions. The findings simplify the derivation
process, reduce computational redundancy, and provide a
clearer theoretical understanding of discrete approximations in
numerical analysis.

Definition of Terms

1. Interpolation Point: A point at which the solution of a
function is evaluated.

2. Collocation Point: A point at which the derivative of a
function is evaluated.

3. Numerical Discrete Scheme: This is an algorithmic
description which requires iterative techniques to
approximate solutions to mathematical equations of
any order of derivatives, by employing values from
neighboring points in a discretized n-dimensional grid to
achieve convergence in solving equations.
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Methodology

We compare two linear multistep method’s discrete schemes from different bases functions. The first, Badmus et al (2014)
at k = 3 with a power series basis, and the second a newly discrete schemes with Legendre polynomial as the basis under the
same identical interpolation, collocation and evaluation conditions for fairness. The former derived a resulting discrete schemes

expressed as
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Selection of Nodes using Legendre Polynomial as basis
Consider the linear multistep method of the form

y(x) = Z5267 @B (x) = Ve 3)
and
y(x) = ZiZ5 aPi(x) = Ynsj )
where (s + ¢ — 1) is the degree of the polynomial and Pj(x) a legendre polynomial with the first few terms expressed as
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The continuous formulation and the continuous scheme of equation (6) are respectively given by
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Evaluating the continuous scheme above at points x, = (v, ,,,»»,.,) » its first derivative evaluated atx = (f,, f ) gives
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Discussion of Result

The derivation of the Linear Multi step Method (LMM) using
both the power series basis and the Legendre polynomial
basis produced identical discrete schemes when the same
interpolation, collocation, and evaluation points were employed
as seen by equation (2) and equation (9). This outcome
demonstrates that the coefficients of the discrete schemes are
determined primarily by the choice of nodes, rather than by the
particular form of a basis function.

Because both bases lead to the same scheme, it is unnecessary
to reproduce the full derivations of their properties in this
publication. Instead, it is sufficient to state that the Legendre
polynomial based derivation reproduced the same numerical
discrete scheme already obtained from the power series
basis under the same conditions of interpolation, collocation
and evaluation points. This directly confirms the basis-
invariance principle: as long as interpolation, collocation,
and evaluation are performed at identical points, the resulting
discrete numerical methods are equivalent, irrespective of the
underlying basis functions. Therefore, the order of accuracy
and stability properties would be found to be equivalent.

This result simplifies the process of deriving new numerical
schemes. Rather than repeating derivations for multiple
bases, researchers can focus on selecting optimal nodes for
interpolation and collocation, confident that the underlying
basis choice will not affect the final scheme.

Conclusion

This study has demonstrated that, irrespective of the bases
functions employed, the derivation of linear multistep methods
using identical interpolation, collocation, and evaluation
points leads to the same discrete scheme. This confirms that
the choice of nodes and not the choice of basis govern the
properties of the resulting numerical method and simplifies
the process of method development. So, it strengthens the
theoretical understanding of discrete approximations in
numerical analysis.

The findings of this work establish a unifying principle:
irrespective of the basis, the discrete schemes derived under
consistent conditions will remain invariant. This principle can
guide future research on higher-order methods, adaptive step
sizes, and other families of bases functions, promoting more
efficient derivations and a deeper insight into the structure of
numerical methods.
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