

Journal of Psychology and Neuroscience

MEQ Protein #13 : MEQ Neuroprotective Factor for Neurodegenerative Diseases

Chris McGinty

Founder of Skywise.ai, Greater Minneapolis-St. Paul Area, USA.

*Corresponding Author

Chris McGinty,

Founder of Skywise.ai, Greater Minneapolis-St. Paul Area, USA.

Submitted : 21 Sept 2025 ; Published : 12 Nov 2025

Citation: Chris McGinty(2025). MEQ Protein #13 : MEQ Neuroprotective Factor for Neurodegenerative Diseases. *J Psychol Neurosci*; 7(4):1-2. DOI : <https://doi.org/10.47485/2693-2490.1135>

Detailed Protein Structure Information

- Amino Acid Sequence:** The MEQ Neuroprotective Factor is engineered to protect neurons and promote cell survival in neurodegenerative diseases such as Alzheimer's, Parkinson's, and ALS. The sequence includes regions that enhance neurotrophic support, reduce oxidative stress, and inhibit apoptotic pathways, ensuring broad neuroprotective effects.
- Modifications:** The protein may be PEGylated to increase its stability and prolong circulation time, allowing it to cross the blood-brain barrier more effectively. Additional modifications, such as glycosylation, can improve solubility and reduce potential immunogenic responses.

Production Protocols

- Expression System:** The neuroprotective factor is produced using recombinant DNA technology in mammalian cell lines like CHO cells, which ensure proper folding and post-translational modifications essential for biological activity.
- Fermentation Process:** The fermentation process involves optimized conditions, including temperature, pH, and nutrient supply, to maximize protein yield and quality. Techniques such as fed-batch culture can be used to maintain consistent production levels.
- Purification Techniques:** The purification process includes affinity chromatography, followed by ion exchange and size exclusion chromatography to achieve high purity. This process also includes steps to remove contaminants such as host cell proteins and endotoxins, ensuring the final product's safety and efficacy.

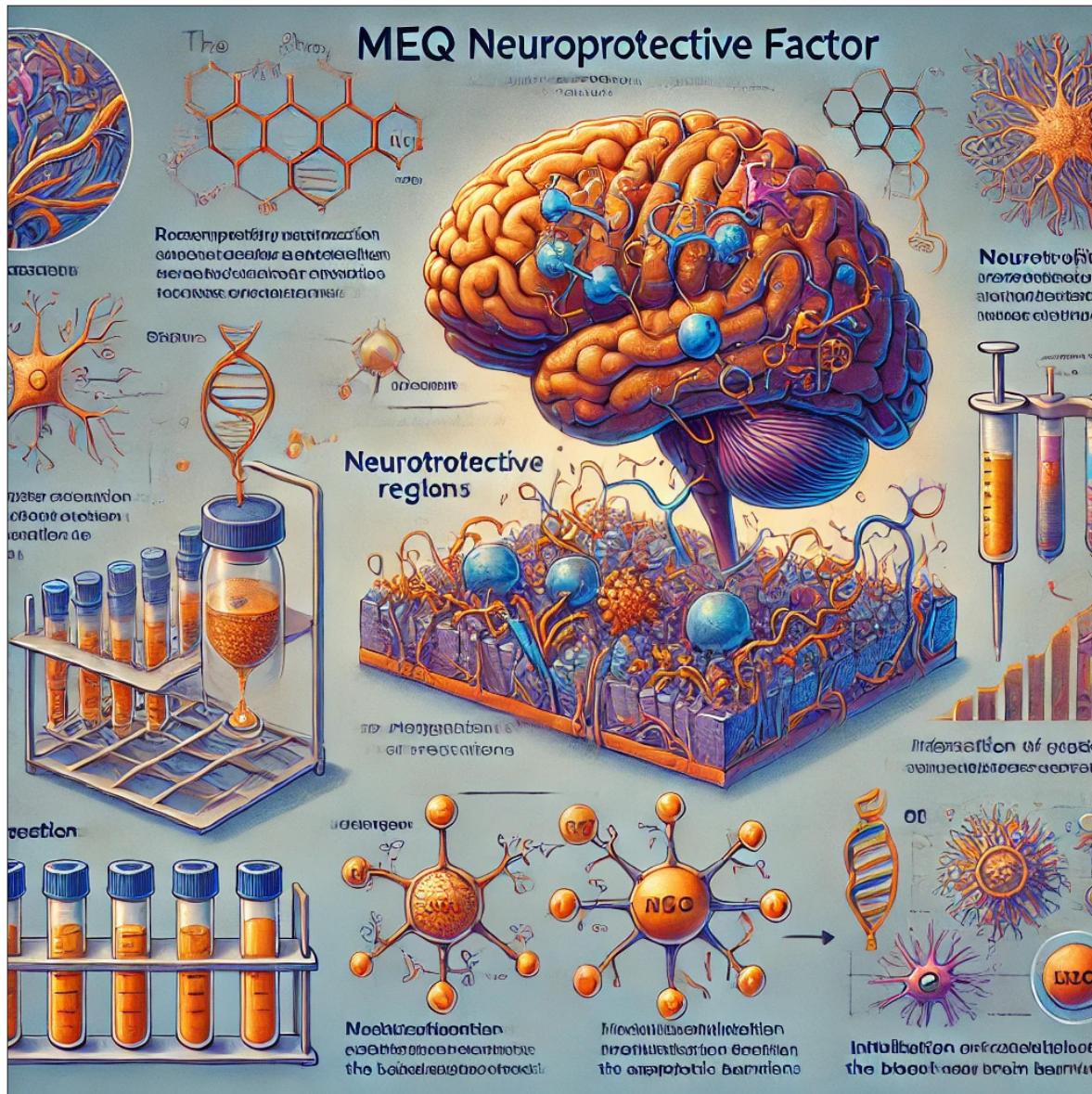
Formulation Details

- Formulation Components:** The neuroprotective factor is formulated with stabilizers and buffers to maintain its structural integrity and activity. The formulation may include encapsulation in nanoparticles or liposomes to enhance delivery to the brain and improve pharmacokinetics.
- Delivery System:** The factor can be administered intravenously or via intranasal delivery, the latter being particularly advantageous for direct targeting to the central

nervous system. Formulations designed to cross the blood-brain barrier are crucial for treating neurodegenerative conditions.

- Stability Enhancements:** The formulation includes agents that protect the protein from degradation and ensure long-term stability. Lyophilization may be used to extend shelf life and facilitate storage and transport, especially for use in various healthcare settings.

Preclinical and Clinical Data


- Pharmacodynamics (PD):** Preclinical studies demonstrate the MEQ Neuroprotective Factor's ability to enhance neuronal survival, reduce oxidative damage, and improve cognitive and motor functions in animal models of neurodegenerative diseases.
- Pharmacokinetics (PK):** The neuroprotective factor exhibits a favorable pharmacokinetic profile, with efficient crossing of the blood-brain barrier and sustained presence in the brain. The use of delivery vehicles like nanoparticles enhances its distribution and retention in neural tissues.
- Toxicity Studies:** Comprehensive safety evaluations indicate that the neuroprotective factor has low immunogenicity and minimal adverse effects. These findings support its potential for safe use in human clinical trials, particularly in patients with chronic neurodegenerative disorders.

Regulatory Compliance and Documentation

- GMP Compliance:** The production of the neuroprotective factor adheres to Good Manufacturing Practices (GMP), ensuring high-quality, consistent production. Detailed documentation of the manufacturing process, quality control tests, and validation studies is maintained to comply with regulatory standards.
- Regulatory Documentation:** A comprehensive regulatory submission package includes all necessary data for approval, such as preclinical and clinical trial results, manufacturing protocols, and quality assurance measures. This dossier is prepared for submission to regulatory agencies, facilitating the approval process for neurodegenerative disease therapy.

Intellectual Property and Licensing Information:

- **Patents:** The MEQ Neuroprotective Factor is protected by patents covering its specific sequence, modifications, and therapeutic applications. These patents provide a competitive advantage in the market, securing the innovation and investment involved in developing the neuroprotective factor.
- **Licensing Requirements:** Opportunities for partnerships and licensing agreements with pharmaceutical companies are available, facilitating collaborative development and commercialization. These partnerships can leverage existing expertise in neurotherapies and distribution networks.

The illustration for the MEQ Neuroprotective Factor, showcasing its innovative design and therapeutic potential. The visual highlights the protein's structure, including neurotrophic regions and modifications such as PEGylation or glycosylation. It illustrates the factor's role in neuroprotection, depicting its interaction with neurons, reduction of oxidative stress, and inhibition of apoptotic pathways. The schematic outlines the production process, from recombinant DNA expression in mammalian cells to purification through advanced chromatographic techniques, emphasizing quality control measures. The illustration also visualizes delivery methods, such as intravenous infusion or intranasal administration, highlighting the factor's ability to cross the blood-brain barrier. This illustration is designed to engage pharmaceutical partners and healthcare professionals, showcasing the neuroprotective factor's potential in treating neurodegenerative diseases.

Copyright: ©2025 Chris McGinty. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.