

The Psycho/Bio/Neurological Bases of Subjective Time Flow

Shoichi SHIOTA^{1*} and Katsumi KOBAYASHI²¹Faculty of Health Sciences Department of General Education, Aomori University of Health and Welfare, 58-1 Oji hamadate mase, Aomori city, Aomori, Japan, 030-0947.²Hanji Kodomo Clinic, 7 Jhosuiji aza kowaki, Ichinomiya city, Aichi, Japan, 491-0004.***Corresponding author****Shoichi SHIOTA,**

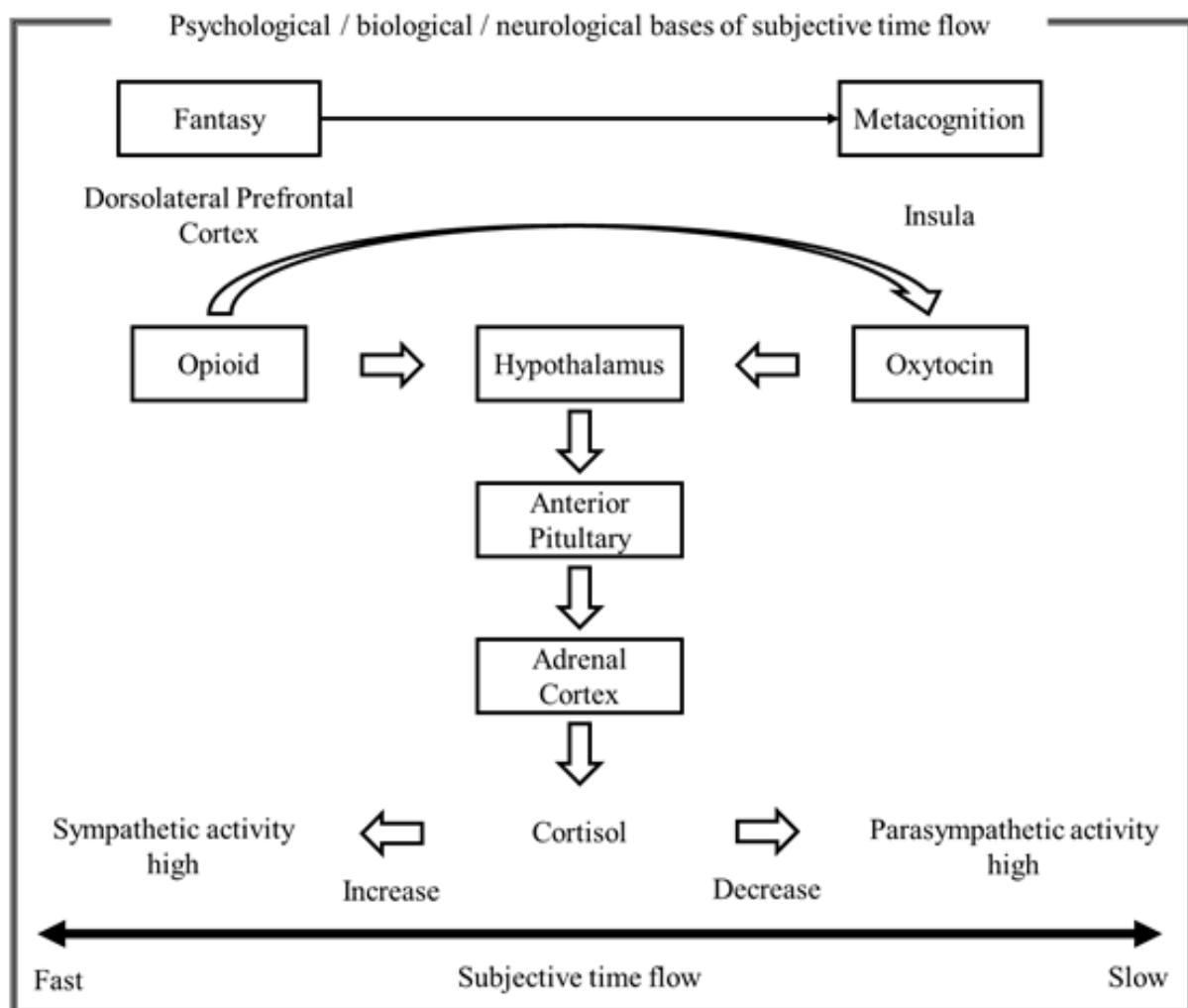
Faculty of Health Sciences Department of General Education, Aomori University of Health and Welfare, 58-1 Oji hamadate mase, Aomori city, Aomori, Japan, 030-0947.

Submitted:22 Dec 2025; Accepted:29-Dec-2025; Published: 9 Jan 2026

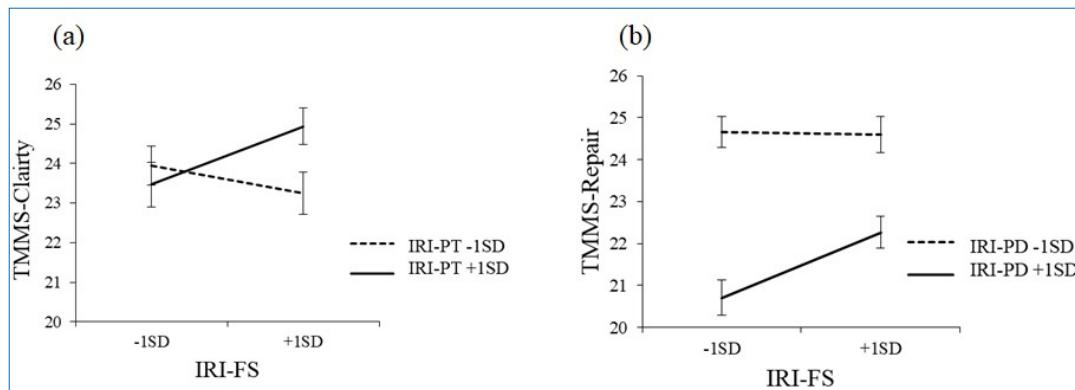
Citation: Shiota, S. & Kobayashi, K. (2026). The Psycho/Bio/Neurological Bases of Subjective Time Flow. *J Nurs Care Repo*; 7(1):1-6. DOI : <https://doi.org/10.47485/3065-7636.1045>**Abstract**

Time is one of the things that people face for a long time throughout their lives. Time has continued to mark itself from the time the concept was first created until today. Subjective time that flow while living daily life has a different speed, and it affects other psychological functions. However, to best of our knowledge, it is little known about psycho/bio/neurological bases that contributed to of one's subjective time. Considering the psycho/bio/neurological mechanisms of subjective time flow, we hypothesize that the interaction of fantasy and metacognition, and these bio/neurological components. Fantasy makes time flow faster, and metacognition makes time flow slower are suggested. Looking at the hypothesis of biological and neurological mechanism of these processes, the relationship between opioid, oxytocin, hypothalamic-pituitary-adrenal axis (HPA axis), and cortisol are important. This biological and neurological mechanism causes differences in flow of subjective time. Then, I explain the psychological, biological and neurological variability in individual with Alzheimer's dementia who has abnormality in subjective time flow. As suggests, when abused child grows up, he/her may immerse himself/herself in a fantastic world to avoid recalling aversive memories. They may speed up subjective time in order to forget (avoidance) aversive memories. Nevertheless, there are limits to the accompanying biological and neurological changes. When that limit is exceeded, their subjective time becomes very slow, and eventually time will stop.

Keywords: Subjective time flow, fantasy, metacognition, opioid, oxytocin, HPA axis, cortisol.**Introduction**


Time is one of the things that people face for a long time throughout their lives. Time has continued to mark itself from the time the concept was first created until today. Time is the length of time between two points. There are times when the flow of time is as precise as the second hand of a clock, others times when the speed of the flow changes each time. For example, when individual have to touching dry ice with bare hands, that time will feel very long, as if time has stopped. On the other hand, the fleeting time people spend with his/her lover feels like a blink of an eye. Even if it was yesterday, it is difficult to remember all the information in detail as if from a video film. Sometimes, everyone can come up with innovative ideas by combining knowledge, information, and concepts that are far apart. These contradict each other if the amount of information changes over time. Therefore, subjective time that flow while living daily life has a different speed, and it affects other psychological functions. There was reported that individual with psychiatric disorder has abnormality in speed of their subjective time. However, to best of my knowledge, it is little known about psycho/bio/neurological bases that contributed to of one's subjective time. In this article, we focus on and discuss about fantasy, metacognition, and its bio/neurological bases that composes subjective time flow. Then, we also explain the both abnormality of them that caused by developing a psychiatric disorder, and adequate regulation method of subjective time flow.

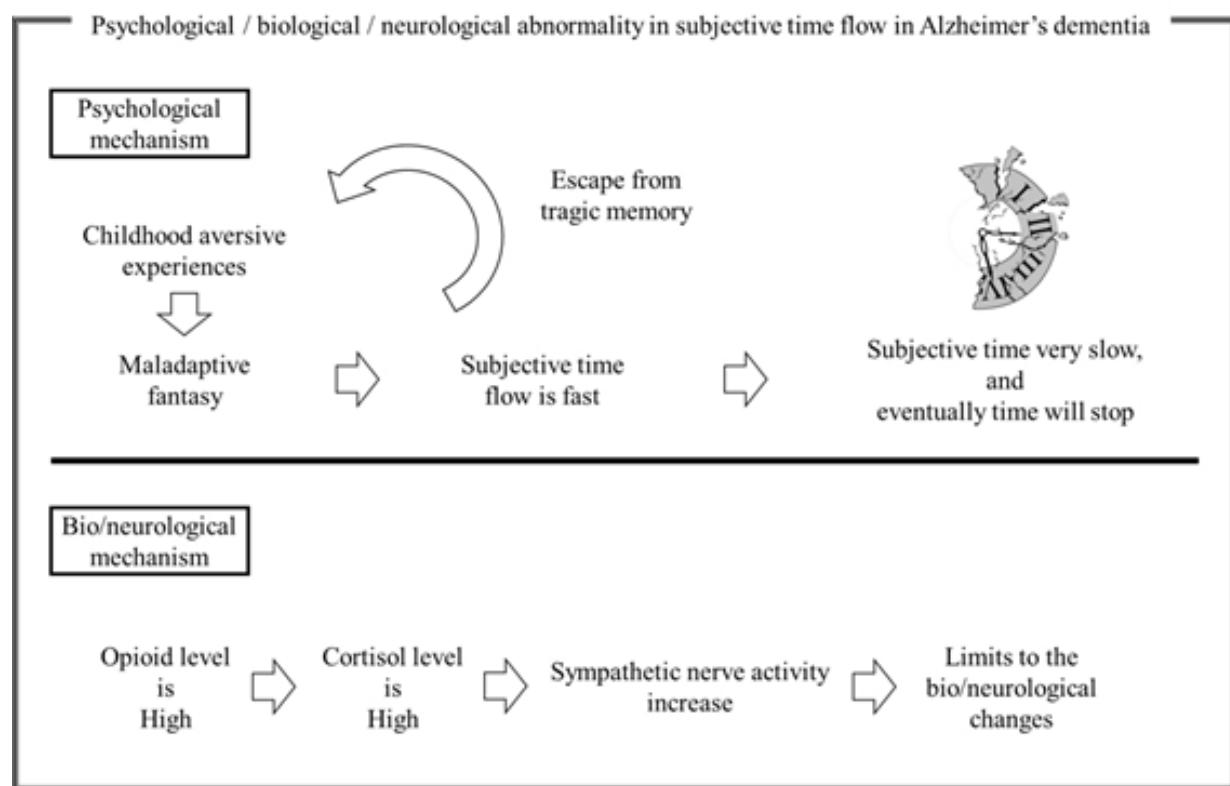
Psycho/bio/neurological mechanisms of subjective time flow


Time—whether objective (“clock”) time or the subjective experience of time—is essential for understanding how individuals, teams, and organizations evolve, grow, learn, and change (Shipp & Jansen, 2021). Subjective time passes for everyone, and sometimes everyone notices the flow of time at random moments. Then, the flow of subjective time differs each time, just as the time taken to do things that are fun or require concentration is felt to be fast, and the time taken to do things that are not interesting feel slow. As central and peripheral nervous system of the subjective time, previous studies indicated that dorsolateral prefrontal cortex (dlPFC), insula and, autonomic nervous system are related to it (Critchley et al., 2004; Krivonogova et al., 2021). As biological associates, endogenous opioid that contain enkephalin oxytocin, and cortisol are contributed to it (Chen et al., 2020; Colonnello et al., 2016; Hennessy et al., 2022). Considering the psycho/bio/neurological mechanisms of subjective time flow, I hypothesize that the interaction of fantasy and metacognition, and these bio/neurological components are contributed to it (Figure 1). First, when discussing at the relationship between one's fantasy and metacognition (see review Shiota, 2024), fantasy is defined as the mental experiences associated with a tendency to identify and transpose (immerse) with characters in movies, novels, plays, and other fictional situations (Davis, 1980; Davis, 1983; Shiota & Nomura, 2022). As neurological

correlates of fantasy, previous studies reported that dlPFC and sympathetic nervous system are related to it (Banissy et al., 2012; Gemignani et al., 2000). In biological bases, previous studies report that an endogenous opioid that contain enkephalin enhances fantasy (Bershad et al., 2015), while oxytocin reduces fantasy (Montag et al., 2020). Metacognition is defined as the cognitive function of objectively monitoring one's inner experiences and emotional events, which vary from moment to moment (Kabat-Zinn, 2023). As neural correlates of metacognition, insula are related to this (Critchley et al.,

2004). As biological correlates, previous studies indicate that the endogenous opioid that contain enkephalin reduces metacognition (Sadeghi et al., 2017), while oxytocin enhances metacognition (Aydin et al., 2018), respectively. Previous psycho/neurological studies revealed that fantasy and its neural bases contribute to metacognition and its neural networks (Gilpin et al., 2015; He et al., 2017; Shiota & Nomura, 2022). According to previous biological study (Hirose et al., 1997), oxytocin is produced in the hypothalamus posterior pituitary, and this process is induced by enkephalin.

Figure 1: Psycho/bio/neurological mechanism of subjective time flow


According to previous study, there is suggested that fantasy makes subjective time faster. For example, Tobin and Grondin (2009) had examined the effects of fantastic video game for one's subjective time flow. As results, participants have felt faster their subjective time flow during play fantasy video game compared to control condition. Likewise, Wood et al. (2007) have indicated that video game makes feel faster on participant's subjective time. Rutrecht et al. (2021) have examined that which video game allows time to pass faster, one uses virtual reality or another one that uses normal screen. They have reported that participants who had playing video game with virtual reality felt faster their subjective time compared to participants who had playing video game with normal screen. There is also suggested that metacognition makes subjective time slower. For example, Witowska et al. (2020) have revealed that there was negative correlation between inter individual differences of meta-awareness for temporal situation and inter individual differences of speed of subjective time flow. Wittmann and Schmidt (2013) reported that mindfulness meditators who enhances sensory experiences, aware of feelings, and of body states has felt slowing down of time interval. Therefore, fantasy makes time flow faster, and metacognition makes time flow slower are suggested. Looking at the hypothesis of biological and neurological mechanism of these processes, the relationship between opioid, oxytocin, hypothalamic-pituitary-adrenal axis (HPA axis), and cortisol are important. HPA axis is the key components of the stress system (see review Guilliams & Edwards, 2010). When the hypothalamus is triggered by a stressor, corticotropin-releasing hormone and arginine vasopressin are secreted, eliciting both the production of adrenocorticotropin hormone from the posterior pituitary and the activation of the noradrenergic neurons of the locus caeruleus/norepinephrine system in the brain. The locus caeruleus/norepinephrine system is primarily responsible for the immediate "fight or flight" response driven by epinephrine and norepinephrine, while adrenocorticotropin hormone drives the production of cortisol from the adrenal cortex. Blood cortisol levels affect the function of the autonomic nervous system. Under normal conditions, the production of corticotropin-releasing hormone and adrenocorticotropin hormone fluctuate in a predictable circadian cycle and are inhibited by high levels of blood cortisol via a well-described negative feedback loop. By adding opioid that related to fantasy and oxytocin that associated to metacognition, this stress system model applied to a model of subjective time flow. According to previous studies (Kemper et al., 1990; McCaul et al., 2001; Wand et al., 2002), opioid modulates one's HPA axis, and it leads to increases cortisol levels. Increase in cortisol levels speeds up the flow of one's subjective time (Hennessy et al., 2022). Oxytocin also modulates one's HPA axis, it leads to decreases cortisol levels (Ditzen et al., 2009; Yeuen, 2010). Therefore, it is suggested that both opioid that related fantasy and oxytocin that associated to metacognition effects cortisol via HPA axis. And there is also suggested that this biological and neurological mechanism causes differences in flow of subjective time. In the next section we will discuss psychological, biological and neurological variability in individual with psychiatric disorder who has abnormality in

subjective time flow. we will discuss where variability occurs in the basis of flow of the subjective time.

Psychological, biological, and neurological abnormality in subjective time flow in individual with Alzheimer's dementia

Dementia including Alzheimer's dementia is the loss of cognitive functioning - thinking, remembering, and reasoning - to such an extent that it interferes with a person's daily life and activities (National Institute on Aging, 2022). Gustavsson et al. (2022) reported that approximately 22% of the population suffers from Alzheimer's dementia. When individual became Alzheimer's dementia, several biological and neurological changes occur, and it leads to impairment of their episodic memory. For example, Guo et al. (2009) reported that individual with Alzheimer's dementia has significantly reduction gray matter volume in temporal pole, dlPFC, hippocampus, para-hippocampus, insula, caudate, thalamus, and cingulate cortex. Especially, previous study (Wong et al., 2014) showed that reduction gray matter volume in dlPFC predicts impairment episodic memory performance in people with Alzheimer's dementia. As biological changes when individual became Alzheimer's dementia, previous studies (e.g., Tanguturi & Streicher, 2023) reported that abnormality of β -site amyloid precursor protein. On this, Tanguturi and Streicher (2023) also suggested that the opioid receptor family is a promising candidate for targeted drug development to treat Alzheimer's dementia. β -site amyloid precursor protein, cleaving enzyme 1, and γ -secretase enzymes promote the amyloidogenic pathway and produce toxic A β peptides that are predisposed to aggregate in the brain. Hence, the targeted inhibition of cleaving enzyme 1/ γ -secretase expression and function is a promising approach for Alzheimer's dementia therapy. Changes in the signaling pathways of opioid receptors increased the expression of cleaving enzyme 1 and γ -secretase, and is strongly related to abnormal production of A β and pathogenesis of Alzheimer's dementia. Ouanes and Popp (2019) reported that individual with Alzheimer's dementia has higher cortisol level compared to healthy. Then, they also reported that high cortisol level exert neurotoxic effects on the hippocampus, and amyloid β peptide toxicity. Applying these findings to my model, there is suggested that opioid-induced excessive secretion of cortisol via the HPA axis causes subjective time to pass too fast. When subjective time passes too fast, it actually too slows down. Then, eventually time will stop. There is suggested that abnormality of fantasy in individual with Alzheimer's dementia. For example, El Haj et al. (2019) demonstrated that individual with Alzheimer's dementia more frequently immerse their fantasy world than in controls. El Haj et al. (2020) also indicated that people with Alzheimer's dementia frequently immerse their fantasy world than control, and contents of it is negative, oriented toward the past, less vivid and specific. Radford et al. (2017) showed that childhood adversity is significantly predicted Alzheimer's dementia. Fantasy is much like a canvas in one's mind, on which one can draw characters such as themselves or others (Shiota & Nomura, 2022). This canvas immerses people in a comprehensive image of an event (Shiota & Nomura, 2022). In

case of child abuse, children immerse themselves in a fantastic world in order to escape from the tragic experiences that are repeated on a daily living by the caregiver (Shiota, 2024). Or, when an abused child grows up, he/she may immerse himself/herself in a fantastic world to avoid recalling aversive memories. They may speed up subjective time in order to forget (avoidance) aversive memories. However, there are limits to the accompanying biological and neurological changes. When that limit is exceeded, their subjective time becomes very slow, and eventually time will stop. There is thought that it becomes difficult to know the front, back, left, and right directions or the passage of time (Figure 2).

Figure 2: Pathology of Alzheimer's dementia

Conclusion

In this article, we discussed about the psychological, neurological and biological bases of subjective time flow. We hypothesized the interaction of fantasy and metacognition, and these bio/neurological components such as opioid, oxytocin, sympathetic nervous system, and para sympathetic nervous system are contributed to it via HPA axis. Then, we explained the psychological, biological and neurological variability in individual with Alzheimer's dementia who has abnormality in subjective time flow. As suggests, when an abused child grows up, he/she may immerse himself/herself in a fantastic world to avoid recalling aversive memories. They may speed up subjective time in order to forget (avoidance) aversive memories. Nevertheless, there are limits to the accompanying biological and neurological changes. When that limit is exceeded, their subjective time becomes very slow, and eventually time will stop. This is my hypothesis of pathologic mechanism of Alzheimer's dementia. However, there are several limitations in my article. First, the effects of opioids on one's cortisol via HPA axis are inconsistent. This is thought to be related to the difference in the prescribed amount of naltrexone. It is necessary to the further studies which examine the effects of low dose naltrexone on one's cortisol via HPA axis. Second, considering time axis, it is slightly difficult to explain the relationships between child abuse and Alzheimer's

dementia. It has to clarify the mediating factors of them. Third, there is no concrete intervention method has been established for one's subjective time. There is needed to new intervention that stimulate the central nervous system from the body surface via peripheral nerves.

Running Title

subjective time flow, fantasy, and metacognition.

Acknowledgment

We would like to thank everyone who has supported my study so far.

Funding

This study was supported by the Grant-in-Aid for the Japan Society for the Promotion of Science (JSPS) fellows (23K12903).

Conflict of Interest

The authors declare no conflict of interest.

References

- References**

 - Shipp, A. J., & Jansen, K. J. (2021). The “other” time: A review of the subjective experience of time in organizations. *Academy of Management Annals*, 15(1), 299-334. DOI: <https://doi.org/10.5465/annals.2018.0142>
 - Critchley, H. D., Wiens, S., Rotshtein, P., Öhman, A., & Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. *Nature neuroscience*, 7(2), 189-195. DOI: <https://doi.org/10.1038/nn1176>
 - Krivenogova, O., Krivenogova, E., & Poskotinova, L. (2021). Heart rate variability, time estimation and Internet-dependent behaviour in 16–17-year-old adolescents: A study in Russian Arctic. *Life*, 11(6), 497. DOI: <https://doi.org/10.3390/life11060497>
 - Chen, J., Mizuno, A., Lyew, T., Karim, H. T., Karp, J. F., Dombrovski, A. Y., & Peciña, M. (2020). Naltrexone modulates contextual processing in depression. *Neuropsychopharmacology*, 45(12), 2070-2078. DOI: <https://doi.org/10.1038/s41386-020-00809-2>
 - Colonnello, V., Domes, G., & Heinrichs, M. (2016). As time goes by: Oxytocin influences the subjective perception of time in a social context. *Psychoneuroendocrinology*, 68, 69-73. DOI: <https://doi.org/10.1016/j.psyneuen.2016.02.015>
 - Hennessy, V. E., Troebinger, L., Iskandar, G., Das, R. K., & Kamboj, S. K. (2022). Accelerated forgetting of a trauma-like event in healthy men and women after a single dose of hydrocortisone. *Translational Psychiatry*, 12(1), 354. DOI: <https://doi.org/10.1038/s41398-022-02126-2>
 - Shiota S. (2024). Psychological, neurological, and biological bases of fantasy for emotional metacognitive process and fostering them by picture book. Colins F. (Ed.). Understanding Emotional Regulation: New Research, pp. 1-23, USA: Nova Science Publishers, Inc. https://www.researchgate.net/publication/381004497_Psychological_neurological_and_biological_bases_of_fantasy_for_emotional_metacognitive_process_and_fostering_them_by_picture_bookUnderstanding_Emotional_Regulation_New_Research
 - Davis, M. (1980). A multidimensional approach to individual differences in empathy. JSAS Catalog of Selected Documents in Psychology, 10, 85. https://www.uv.es/friasnav/Davis_1980.pdf
 - Davis, M. H. (1983). The effects of dispositional empathy on emotional reactions and helping: A multidimensional approach. *Journal of personality*, 51(2), 167-184. DOI: <http://dx.doi.org/10.1111/j.1467-6494.1983.tb00860.x>
 - Shiota, S., & Nomura, M. (2022). Role of fantasy in emotional clarity and emotional regulation in empathy: A preliminary study. *Frontiers in Psychology*, 13, 912165. DOI: <https://doi.org/10.3389/fpsyg.2022.912165>
 - Banissy, M. J., Kanai, R., Walsh, V., & Rees, G. (2012). Inter-individual differences in empathy are reflected in human brain structure. *Neuroimage*, 62(3), 2034-2039. DOI: <https://doi.org/10.1016/j.neuroimage.2012.05.081>
 - Gemignani, A., Santarcangelo, E., Sebastiani, L., Marchese, C., Mammoliti, R., Simoni, A., & Ghelarducci, B. (2000). Changes in autonomic and EEG patterns induced by hypnotic imagination of aversive stimuli in man. *Brain research bulletin*, 53(1), 105-111. DOI: [https://doi.org/10.1016/s0361-9230\(00\)00314-2](https://doi.org/10.1016/s0361-9230(00)00314-2)
 - Bershad, A. K., Seiden, J. A., & de Wit, H. (2016). Effects of buprenorphine on responses to social stimuli in healthy adults. *Psychoneuroendocrinology*, 63, 43-49. DOI: <https://doi.org/10.1016/j.psyneuen.2015.09.011>
 - Montag, C., Schöner, J., Speck, L. G., Just, S., Stuke, F., Rentzsch, J., Gallinat, J., & Majić, T. (2020). Peripheral oxytocin is inversely correlated with cognitive, but not emotional empathy in schizophrenia. *Plos one*, 15(4), e0231257. DOI: <https://doi.org/10.1371/journal.pone.0231257>
 - Kabat-Zinn, J. (2023). Wherever you go, there you are: Mindfulness meditation in everyday life. Hachette UK. https://ia802906.us.archive.org/view_archive.php?archive=/13/items/buddhism-engl/BUDDHISM%20ENGL.rar&file=BUDDHISM%20ENGL%20FETC%2FAND%2FWherever%20You%20go%20There%20You%20are%20Mindfulness%20Meditation%20In%20Everday%20meditation%20John%20Kobatt%20Jinn.pdf
 - Sadeghi, S., Ekhtiari, H., Bahrami, B., & Ahmadabadi, M. N. (2017). Metacognitive deficiency in a perceptual but not a memory task in methadone maintenance patients. *Scientific reports*, 7(1), 7052. DOI: <https://doi.org/10.1038/s41598-017-06707-w>
 - Aydin, O., Lysaker, P. H., Balıkçı, K., Ünal-Aydin, P., & Esen-Danacı, A. (2018). Associations of oxytocin and vasopressin plasma levels with neurocognitive, social cognitive and meta cognitive function in schizophrenia. *Psychiatry research*, 270, 1010-1016. DOI: <https://doi.org/10.1016/j.psychres.2018.03.048>
 - Gilpin, A. T., Brown, M. M., & Pierucci, J. M. (2015). Relations between fantasy orientation and emotion regulation in preschool. *Early Education and Development*, 26(7), 1-13. DOI: <https://doi.org/10.1080/10409289.2015.1000716>
 - He, W. J., Wong, W. C., & Hui, A. N. N. (2017). Emotional reactions mediate the effect of music listening on creative thinking: Perspective of the arousal-and-mood hypothesis. *Frontiers in psychology*, 8, 1680. DOI: <https://doi.org/10.3389/fpsyg.2017.01680>
 - Hirose, M., Hosokawa, T., & Tanaka, Y. (1997). Extradural buprenorphine suppresses breast feeding after caesarean section. *British journal of anaesthesia*, 79(1), 120-121. DOI: <https://doi.org/10.1093/bja/79.1.120>
 - Tobin, S., & Grondin, S. (2009). Video games and the perception of very long durations by adolescents. *Computers in Human Behavior*, 25(2), 554-559. DOI: <https://doi.org/10.1016/j.chb.2008.12.002>
 - Wood, R. T., Griffiths, M. D., & Parke, A. (2007). Experiences of time loss among videogame players: An empirical study. *Cyberpsychology & behavior*, 10(1), 38-44. DOI: <https://doi.org/10.1089/cpb.2006.9994>

23. Rutrecht, H., Wittmann, M., Khoshnoud, S., & Igarzábal, F. A. (2021). Time speeds up during flow states: A study in virtual reality with the video game thumper. *Timing & Time Perception*, 9(4), 353-376.
DOI: <https://doi.org/10.1163/22134468-bja10033>
24. Witowska, J., Schmidt, S., & Wittmann, M. (2020). What happens while waiting? How self-regulation affects boredom and subjective time during a real waiting situation. *Acta Psychologica*, 205, 103061.
DOI: <https://doi.org/10.1016/j.actpsy.2020.103061>
25. Wittmann, M., & Schmidt, S. (2013). Mindfulness meditation and the experience of time. In *Meditation-neuroscientific approaches and philosophical implications* (pp. 199-209). Cham: Springer International Publishing. https://www.researchgate.net/publication/260615144_Mindfulness_Meditation_and_the_Experience_of_Time
26. Guilliams, T. G., & Edwards, L. (2010). Chronic stress and the HPA axis. *The standard*, 9(2), 1-12. https://www.pointinstitute.org/wp-content/uploads/2012/10/standard_v_9.2_hpa_axis.pdf
27. Kemper, A., Koalick, F., Thiele, H., Retzow, A., Rathsack, R., & Nickel, B. (1990). Cortisol and β -endorphin response in alcoholics and alcohol abusers following a high naloxone dosage. *Drug and alcohol dependence*, 25(3), 319-326.
DOI: [https://doi.org/10.1016/0376-8716\(90\)90158-B](https://doi.org/10.1016/0376-8716(90)90158-B)
28. McCaul, M. E., Wand, G. S., Stauffer, R., Lee, S. M., & Rohde, C. A. (2001). Naltrexone dampens ethanol-induced cardiovascular and hypothalamic-pituitary-adrenal axis activation. *Neuropsychopharmacology*, 25(4), 537-547.
DOI: [https://doi.org/10.1016/S0893-133X\(01\)00241-X](https://doi.org/10.1016/S0893-133X(01)00241-X)
29. Wand, G. S., McCaul, M., Yang, X., Reynolds, J., Gotjen, D., Lee, S., & Ali, A. (2002). The mu-opioid receptor gene polymorphism (A118G) alters HPA axis activation induced by opioid receptor blockade. *Neuropsychopharmacology*, 26(1), 106-114.
DOI: [https://doi.org/10.1016/S0893-133X\(01\)00294-9](https://doi.org/10.1016/S0893-133X(01)00294-9)
30. Ditzen, B., Schaefer, M., Gabriel, B., Bodenmann, G., Ehlert, U., & Heinrichs, M. (2009). Intranasal oxytocin increases positive communication and reduces cortisol levels during couple conflict. *Biological psychiatry*, 65(9), 728-731.
DOI: <https://doi.org/10.1016/j.biopsych.2008.10.011>
31. Yegen, B. (2010). Oxytocin and hypothalamo-pituitaryadrenal axis. *Marmara Pharmaceutical Journal*, 14(2), 61-66. DOI: <https://doi.org/10.12991/mpj.51516>
32. National Institute on Aging. (2022). What Is Dementia? Symptoms, Types, and Diagnosis. URL: <https://www.nia.nih.gov/health/alzheimers-and-dementia/what-dementia-symptoms-types-and-diagnosis#:~:text=The%20signs%20and%20symptoms%20can,lost%20in%20a%20familiar%20neighborhood>
33. Gustavsson, A., Norton, N., Fast, T., Frölich, L., Georges, J., Holzapfel, D., Kirabali, T., Krolak-Salmon, P., Rossini, P. M., Ferretti, M. T., Lanman, L., Chadha, A. S., & van der Flier, W. M. (2022). Global estimates on the number of persons across the Alzheimer's disease continuum. *Alzheimer's & Dementia*, 19(2), 658-670.
DOI: <https://doi.org/10.1002/alz.12694>
34. Guo, X., Wang, Z., Li, K., Li, Z., Qi, Z., Jin, Z., Yao, L., & Chen, K. (2010). Voxel-based assessment of gray and white matter volumes in Alzheimer's disease. *Neuroscience letters*, 468(2), 146-150.
DOI: <https://doi.org/10.1016/j.neulet.2009.10.086>
35. Wong, S., Flanagan, E., Savage, G., Hodges, J. R., & Hornberger, M. (2014). Contrasting prefrontal cortex contributions to episodic memory dysfunction in behavioural variant frontotemporal dementia and Alzheimer's disease. *PLoS one*, 9(2),
DOI: <https://doi.org/10.1371/journal.pone.0087778>
36. Tanguturi, P., & Streicher, J. M. (2023). The role of opioid receptors in modulating Alzheimer's Disease. *Frontiers in Pharmacology*, 14, 1056402.
DOI: <https://doi.org/10.3389/fphar.2023.1056402>
37. Ouanes, S., & Popp, J. (2019). High cortisol and the risk of dementia and Alzheimer's disease: a review of the literature. *Frontiers in aging neuroscience*, 11, 435469.
DOI: <https://doi.org/10.3389/fnagi.2019.00043>
38. El Haj, M., Antoine, P., Moustafa, A. A., Roche, J., Quaglino, V., & Gallouj, K. (2019). Off-track thoughts: Intentional and unintentional mind wandering in Alzheimer's disease. *Geriatrics & Gerontology International*, 19(4), 342-346.
DOI: <https://doi.org/10.1111/ggi.13613>
39. El Haj, M., Allain, P., Antoine, P., Gallouj, K., Moustafa, A. A., Quaglino, V., & Roche, J. (2020). The subjective experience of mind wandering in Alzheimer's disease. *Cognitive Neuropsychiatry*, 25(3), 201-214.
DOI: <https://doi.org/10.1080/13546805.2020.1722085>
40. Radford, K., Delbaere, K., Draper, B., Mack, H. A., Daylight, G., Cumming, R., Chalkley, S., Minogue, C., & Broe, G. A. (2017). Childhood stress and adversity is associated with late-life dementia in Aboriginal Australians. *The American Journal of Geriatric Psychiatry*, 25(10), 1097-1106.
DOI: <https://doi.org/10.1016/j.jagp.2017.05.008>

Copyright: ©2026. Shoichi SHIOTA. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.